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Preliminaries

• First, we investigate the effects of environmental changes on the value

function. We show that the optimal value function Lipschitz continuously

depends on the transition function and on the immediate cost function.

• Then, we analyze stochastic iterative algorithms with time-dependent

update operators. A relaxed convergence theorem is presented and

some numerical experiments are shown.

• Afterwards, we introduce (ε, δ)-MDPs, a class of non-stationary MDPs.

In this model the transition and the cost functions may change over time,

provided that the accumulated changes remain bounded in the limit.

• Finally, we consider reinforcement learning methods in (ε, δ)-MDPs. An

approximate convergence theorem is deduced from the previous results.
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Reinforcement Learning

• Reinforcement learning (RL) is a computational approach to learn from

the interaction with an environment based on feedbacks, e.g., rewards.

• An interpretation: consider an agent acting in an uncertain environment

and receiving information on the actual states and immediate costs.

• The aim is to learn an efficient behavior (control policy), such that

applying this strategy minimizes the expected costs in the long run.
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Markov Decision Processes (MDPs)

By a (stationary, finite, discrete time, fully observable) Markov decision

process (MDP) we mean a 6-tupleM = 〈X,A,A, p, g, α〉, where:

• X is a finite set of discrete states

• A is a finite set of control actions

• A : X→ P(A) is an action constraint function

• p : X× A→ ∆(X) is the transition function, p(y |x, a) denotes the

probability of arriving at state y after taking action a ∈ A(x) in a state x

• g : X× A→ R is an immediate cost (or reward) function

• α ∈ [0, 1) is the discount rate or discount factor.

It is “Markov”, since p and g only depend on the current state and action.

Balázs Csanád Csáji 24 September, 2008 –6–



Learning in Changing Environments

The Bellman Equation

• A (stationary, Markovian, randomized) control policy π : X→ ∆(A)

is a function from states to probability distributions over actions.

• The value function of a policy Jπ : X→ R is defined as follows

Jπ(x) = E

[ ∞∑
t=0

αtg(Xt, A
π
t )

∣∣∣∣ X0 = x

]
,

where Aπ
t ∼ π(Xt) and Xt+1 ∼ p(Xt, At) (“∼” = “has distribution”).

• The Bellman optimality equation is TJ∗ = J∗ where

(TJ)(x) = min
a∈A(x)

[
g(x, a) + α

∑

y∈X
p(y |x, a)J(y)

]

• We aim at finding a policy that minimizes the expected costs.
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Contractions and Value Iteration

• The action-value function of a policy Qπ : X× A→ R is

Qπ(x, a) = E

[ ∞∑
t=0

αtg(Xt, A
π
t )

∣∣∣∣ X0 = x,A0 = a

]

• Function f : X → Y is Lipschitz continuous if there exists a β ≥ 0:

∀ x1, x2 ∈ X : ‖f(x1)− f(x2)‖Y ≤ β ‖x1 − x2‖X , where X and

Y are normed spaces with norms ‖·‖X and ‖·‖Y , respectively.

• The smallest such β is called the Lipschitz constant of f .

• If β < 1, then the function is called a contraction mapping.

• The Bellman operator is a contraction with Lipschitz constant α.

• Therefore, J∗ is unique and it is the limit of the iteration Jt+1 = TJt.

Balázs Csanád Csáji 24 September, 2008 –8–



Learning in Changing Environments

PART II.
Value Function Bounds for
Environmental Changes
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Value Function Bounds for Changes
Theorem 1. Assume that two discounted MDPs differ only in their

transition-probability functions, and let these two functions be denoted by p1

and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤ α |X| ‖g‖∞
(1− α)2

‖p1 − p2‖∞

Theorem 2. Assume that two discounted MDPs differ only in the

immediate-cost functions, and let these two functions be denoted by g1

and g2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤ 1

1− α
‖g1 − g2‖∞

We applied the supremum norm: ‖f‖∞ = sup {|f(x)| : x ∈ dom(f)}.
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Value Function Bounds for Changes
Theorem 3. Assume that two discounted MDPs differ only in their

transition-probability functions, and let these two functions be denoted by p1

and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤ α ‖g‖∞
(1− α)2

‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X× A× X→ R type functions:

‖f‖1 = max
x, a

∑

y∈X
| f(x, a, y) |

For example, f(x, a, y) = p(y | x, a).

Since ∀f : ‖f‖1 ≤ n ‖f‖∞, where n is size of the state space, the

estimation of Theorem 3 is at least as good as the estimation of Theorem 1.
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Discount Factor Changes
Theorem 4. Assume that two MDPs differ only in the discount factors,

α1, α2 ∈ [0, 1). Let the optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤ |α1 − α2|
(1− α1)(1− α2)

‖g‖∞

However, as the following example shows, this dependence is non-Lipschitz.

At the same time, if we fix an α0 < 1 and only allow discount factors from

[0, α0], then this dependence becomes Lipschitz continuous, as well.
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Tracing Back to Cost Changes

Discount factor changes can be traced back to cost changes:

Lemma 5. Assume that two discounted MDPs,M1 andM2, differ only in

the discount factors, denoted by α1 and α2. Then, there exists an MDP,

denoted byM3, such that it differs only in the immediate-cost function from

M1, thus its discount factor is α1, and it has the same optimal value

function asM2. The immediate-cost function ofM3 is

ĝ(x, a) = g(x, a) + (α2 − α1)
∑

y∈X
p(y | x, a)J∗2 (y),

where p is the transition function of allMi; g is the cost function ofM1

andM2; and J∗2 (y) denotes the optimal cost-to-go function ofM2.

However, cost changes cannot be traced back to transition changes!
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Stochastic Iterative Algorithms (SIAs)

• We denote the set of value functions by V which contains, in general, all

bounded real-valued functions over an arbitrary set X .

• Many learning and optimization methods can be written in a general form

as a stochastic iterative algorithm (SIA). More precisely, for all x ∈ X as

Vt+1(x) = (1− γt(x))Vt(x) + γt(x)((KtVt)(x) + Wt(x)),

where Vt ∈ V , operator Kt : V → V acts on value functions,

parameter γt denotes random stepsizes and Wt is a noise parameter.

• Note that the value function operator, Kt, is time-dependent.

• Q-learning, SARSA and TD-learning, e.g., can be formulated this way.
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Two Classical Examples

• The Robbins-Monro stochastic approximation algorithm: let qt be a

sequence of independent identically-distributed (i.i.d.) random variables

with unknown mean µ and finite variance. Let us define vt by

vt+1 = (1− γt)vt + γtqt

Then, sequence vt converges almost surely to µ if suitable assumptions

on the stepsize parameters, γt, are made, e.g., γt = 1/t.

• Another example of a SIA is the stochastic gradient descent algorithm

which aims at minimizing cost function f and is described by

vt+1 = (1− γt)vt + γt(vt −∇f(vt) + wt),

where wt is a noise parameter and∇f denotes the gradient of f .
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Main Assumptions
(A1) There exits a constant C > 0 such that for all x and t, we have

E [Wt(x) | Ft] = 0 and E
[
W 2

t (x) | Ft

]
< C < ∞,

where Ft = {V0, . . . , Vt, W0, . . . , Wt−1, γ0, . . . , γt} is the “history”.

(A2) For all x and t: γt(x) ∈ [0, 1] and we have with probability one
∞∑

t=0

γt(x) = ∞ and
∞∑

t=0

γ2
t (x) < ∞

(A3) For all t, operator Kt : V → V is a supremum norm contraction

mapping with Lipschitz constant βt < 1 and with fixed point V ∗
t :

∀V1, V2 ∈ V : ‖KtV1 −KtV2‖∞ ≤ βt ‖V1 − V2‖∞
Let us introduce β0 = lim sup

t→∞
βt, and we assume that β0 < 1.

Balázs Csanád Csáji 24 September, 2008 –17–



Learning in Changing Environments

Approximate Convergence
Definition 6. We say that a sequence of random variables Xt

κ-approximates X with κ > 0 if for all ε > 0 there exits a t0 such that

P
(

sup
t>t0

(‖Xt −X‖ ≤ κ)

)
> 1− ε

Theorem 7. Suppose that Assumptions (A1), (A2) and (A3) hold and let

Vt be the sequence generated by a SIA. Then, for any V ∗, V0 ∈ V , the

sequence Vt κ-approximates function V ∗ with

κ =
4%

1− β0

where % = lim sup
t→∞

‖V ∗
t − V ∗‖∞

Notice that V ∗ can be an arbitrary function!
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A Simple Numerical Example
Consider a one dimensional stochastic process, vt, characterized by

vt+1 = (1− γt)vt + γt(Kt(vt) + wt),

where γt is the learning rate and wt is a noise term. Suppose we have n

alternating operators ki with Lipschitz constants bi < 1 and fixed points v∗i
ki(v) = v + (1− bi)(v

∗
i − v)

The current operator at time t is Kt = ki if i ≡ t (mod n).
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A Deterministic Pathological Example

• According to the Banach fixed point theorem, if we have a contraction f

over a complete metric space, V , with fixed point v∗ = f(v∗) then for

any initial v0 the sequence vt+1 = f(vt) converges to v∗.

• Now, suppose we have n alternating contraction mappings ki with

Lipschitz constants bi < 1 and fixed points v∗i , respectively.

• Let vt+1 = Kt(vt) where Kt = ki if i ≡ t (mod n), v0 is arbitrary.

• In each iteration, Kt attracts the point towards its fixed point.

• Then, does vt converge to the convex hull of the fixed points?

• No! Moreover, even if v0 is in the middle of the convex hull vt could

starting moving farer and farer from the fixed points in each iteration.
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A Deterministic Pathological Example

ki(v) =

{
v + (1− bi)(v

∗
i − v) if sgn(v∗i ) = sgn(v),

v∗i + (v∗i − v) + (1− bi)(v − v∗i ) otherwise,

where sgn(·) denotes the signum function and i ∈ {a, b}.
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PART IV.
Reinforcement Learning in

Non-Stationary MDPs
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Varying Environments: (ε, δ)-MDPs

• Now, a class of non-stationary MDPs is defined. In this model the

transition-probabilities and the immediate-costs may change over time,

as long as the accumulated changes remain asymptotically bounded.

Definition 8. A tuple 〈X,A,A, {pt}∞t=1, {gt}∞t=1, α〉, which represents a

sequence of MDPs, is called an (ε, δ)-MDP where ε, δ > 0, if there exists

an MDP,M = 〈X,A,A, p, g, α〉, called the base MDP, such that

• lim sup
t→∞

‖p− pt‖ ≤ ε

• lim sup
t→∞

‖g − gt‖ ≤ δ

• The optimal cost-to-go function of the base MDP,M, and of the current

MDP at time t,Mt, are denoted by J∗ and J∗t , respectively.
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Relaxed Convergence in (ε, δ)-MDPs

Assume we have an (ε, δ)-MDP, then (from Theorems 2 and 3)

lim sup
t→∞

‖J∗ − J∗t ‖∞ ≤ d(ε, δ)

d(ε, δ) =
α ε (‖g‖∞ + δ)

(1− α)2
+

δ

1− α

where J∗t and J∗ are the optimal value functions ofMt andM.

Corollary 9. Consider an (ε, δ)-MDP and assume that (A1), (A2) and (A3)

hold. Let Vt be the sequence generated by a SIA. Assume that the fixed

point of each Kt is J∗t . Then, Vt κ-approximates J∗ with

κ =
4 d(ε, δ)

1− β0
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Async Value Iteration in (ε, δ)-MDPs

• “Classical” value iteration ∀J0 : Jt+1 = TJt converges to J∗.

• A small stepsize variant of asynchronous value iteration in (ε, δ)-MDPs:

Jt+1(x) = (1− γt(x))Jt(x) + γt(x)(TtJt)(x),

where Tt is the Bellman operator of the current MDP at time t.

• Corollary 9 can be applied to prove convergence in (ε, δ)-MDPs:

– There is no noise term⇒ (A1) is trivially satisfied.

– Each operator Tt is an α contraction⇒ (A3) holds.

– Thus, (A2)⇒ Jt κ-approximates J∗ with κ = 4 d(ε, δ)/(1− α).
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Q-learning in (ε, δ)-MDPs

• The one-step version of Watkins’ Q-learning rule in (ε, δ)-MDPs is

Qt+1(x, a) = (1− γt(x, a))Qt(x, a) + γt(x, a)(T̃tQt)(x, a),

(T̃tQt)(x, a) = gt(x, a) + α min
B∈A(Y )

Qt(Y, B),

where Y is a random variable generated from (x, a) by simulation.

• The T̃t operator can be rewritten in a form as follows

(T̃tQ)(x, a) = (K̃tQ)(x, a) + W̃t(x, a),

where W̃t(x, a) is a noise with zero mean and finite variance, and

(K̃tQ)(x, a) = gt(x, a) + α
∑

y∈X
pt(y | x, a) min

b∈A(y)
Q(y, b).
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Q-learning in (ε, δ)-MDPs

• Wt has zero mean and finite variance⇒ (A1) is satisfied.

• Each operator K̃t is an α contraction⇒ (A3) holds.

• Thus, (A2)⇒Qt κ-approximates Q∗ with κ = 4 d(ε, δ)/(1− α).

• Similarly, the approximate convergence of TD(λ) (temporal difference

learning) policy evaluation in (ε, δ)-MDPs can be proven.

Lemma 10. Assume we have two discounted MDPs which differ only in the

transition-probability functions or only in the immediate-cost functions or

only in the discount factors. Let the corresponding optimal action-value

functions be Q∗
1 and Q∗

2, respectively. Then the bounds for ‖J∗1 − J∗2‖∞
of Theorems 3, 2 and 4 are also bounds for ‖Q∗

1 −Q∗
2‖∞.
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Changes During Scheduling

Figure 1: disturbance: (a) machine breakdown, (b) new machine availability

Figure 2: disturbance: (a) new job arrival, (b) job cancellation
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Approximate Dynamic Programming

• Approximate dynamic programming (ADP) methods often take the form

Φ(rt+1) = Π
(
(1− γt) Φ(rt) + γt(Kt(Φ(rt)) + Wt)

)
,

where rt ∈ Θ is a parameter, Θ is the parameter space, e.g., Θ ⊆ Rp,

Φ : Θ → F is an approximation function where F ⊆ V is a Hilbert

space. Function Π : V → F is a projection mapping and Kt,Wt, γt

are the same as the previously (cf. stochastic iterative algorithms).

• In order to apply the previous results, Π should be

– Additive: ∀V1, V2 : Π(V1 + V2) = Π(V1) + Π(V2)

– Homogeneous: ∀V : ∀α : Π(α V ) = α Π(V )

– Nonexpansive: ∀V1, V2 : ‖Π(V1)− Π(V2)‖ ≤ ‖V1 − V2‖
• Then, Theorem 7 provides convergence results for ADPs.

Balázs Csanád Csáji 24 September, 2008 –29–



Learning in Changing Environments

PART V.
Conclusion
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Conclusion
1. The value functions of discounted MDPs Lipschitz continuously depend

on the transition-probability and the immediate-cost functions.

2. In (ε, δ)-MDPs these function may vary over time, provided that the

accumulated changes remain asymptotically bounded.

3. A convergence theorem for stochastic iterative algorithms with

time-dependent update was given. Under suitable assumptions, this

theorem guarantees convergence to an environment of a target function.

4. These results were combined to deduce a convergence theorem for

reinforcement learning algorithms working in changing environments.

5. Some numerical experiments were also presented to demonstrate

working in changing environments.
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Thank you for your attention!
If you have further questions, you can contact me at:

csaji@sztaki.hu, http://www.sztaki.hu/∼csaji
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