
A Machine Learning Approach to Stochastic Resource Control
Balázs Csanád Csáji (balazs.csaji@uclouvain.be), Department of Mathematical Engineering, Université catholique de Louvain, Belgium

• Resource allocation problems arise in many real-world domains, e.g.:
production control, personnel / fleet / inventory management, schedul-
ing of computer programs, controlling a cellular mobile network.

• They are usually strongly NP-hard, e.g., TSP and JSP, and they do
not have any good polynomial time approximation algorithm, either.

• Moreover, real-world problems are often large-scale, there are significant
uncertainties and the environment may even change over time.

• The extension of most classical algorithms, such as “branch & cut” or
“constraint propagation”, to the stochastic case is non-trivial.

• We suggest machine learning approaches to handle these problems.

Motivations

We showed that stochastic resource allocation problems can be reformulated as Markov decision processes,
more precisely, as stochastic shortest path problems, with favorable properties, e.g., all policies are proper.

An adaptive sampling based method was applied, by which the optimal
value function is iteratively approximated. The updates are performed at
the end of each episode (a simulation of the resource allocation process).

Sampling and Regression Based Reinforcement Learning

1. Initialize Q0, L0, τ and let i = 1.
2. Repeat (for each episode)
3. Set πi to a soft and semi-greedy policy w.r.t. Qi−1, e.g.,

πi(x, a) = exp(−Qi−1(x, a)/τ )/
[

∑

b∈A(x) exp(−Qi−1(x, b)/τ )
]

.

4. Simulate a state-action trajectory from x0 using policy πi.
5. For j = ti to 1 (for each state-action pair in the episode) do

6. Determine the features of the state-action pair, yi
j = h(xi

j, a
i
j).

7. Compute the new action-value estimation for xi
j and ai

j, e.g.,

zi
j = (1 − γi)Qi−1(x

i
j, a

i
j) + γi

[

g(xi
j, a

i
j) + α minb∈A(xi

j+1)
Qi−1(x

i
j+1, b)

]

.

8. End loop (end of state-action processing)
9. Update sample set Li−1 with

{〈

yi
j, z

i
j

〉

: j = 1, . . . , ti
}

, the result is Li.
10. Calculate Qi by fitting a smooth regression function to the sample of Li.
11. Increase the episode number, i, and decrease the temperature, τ .
12. Until some terminating conditions are met, e.g., i reaches a limit

or the estimated approximation error to Q∗ gets sufficiently small.
Output: the action-value function Qi (or π(Qi), e.g., the greedy policy w.r.t. Qi).

The notations of the pseudo-code are as follows: variable i is the episode number, ti is the length of episode
i and j is a parameter for time-steps inside an episode. The Boltzmann temperature is denoted by τ , πi is
the control policy applied in episode i and x0 is the initial state. State xi

j and action ai
j correspond to step

j in episode i. Function h computes features for state-action pairs while γi denotes learning rates. Finally,
Li denotes the regression sample and Qi is the fitted (state-action) value function in episode i.

Markovian Resource Control

We applied several additional improvements to the core solution method:

•Action space decomposition: in order to decrease the available actions
in the states, the action space was decomposed (figure on the right side).

•Rollout methods: to guide the initial exploration and to gather samples
for the regression, limited-lookahead rollout algorithms were applied.

•Clustering: in order to divide the problem into several smaller subprob-
lems, we clustered the tasks according to their expected slack times.

•Distributed sampling: we can exploit having more than one processors.

Additional Improvements

The method has proven to be very efficient
on benchmark and industrial problems.

• It outperformed most previous algo-
rithms on hard job-shop problems (top).

• It showed excellent performance on a sim-
ulated industrial problem (middle).

• Clustering not only resulted in speedup
but also in performance gains (down).

Advantages over previous approaches:

• It is general, since it is applicable to a
large class of resource control problems.

• It takes uncertainties into account.

• The method can also quickly adapt to
disturbances and environmental changes.

• There are theoretical guarantees of ap-
proximating the global optimal solution.

• It scales-well with the size of the problem
without dramatic performance losses.

• It can use domain specific knowledge, as
well (e.g., in the rollouts or explorations).

• It is an iterative, any-time solution.

Performance on benchmark datasets of hard flexible job-shop problems:

benchmark 1000 iterations 5000 iterations 10 000 iterations

dataset flexib avg err std dev avg err std dev avg err std dev

sdata 1.0 8.54 % 5.02 % 5.69 % 4.61 % 3.57 % 4.43 %

edata 1.2 12.37 % 8.26 % 8.03 % 6.12 % 5.26 % 4.92 %

rdata 2.0 16.14 % 7.98 % 11.41 % 7.37 % 7.14 % 5.38 %

vdata 5.0 10.18 % 5.91 % 7.73 % 4.73 % 3.49 % 3.56 %

average 2.3 11.81 % 6.79 % 8.21 % 5.70 % 4.86 % 4.57 %

Performance on industry-related problems (simulation of a real factory):

configuration 1000 iterations 5000 iterations 10 000 iterations

machs tasks avg err std dev avg err std dev avg err std dev

6 30 4.01 % 2.24 % 3.03 % 1.92 % 2.12 % 1.85 %

16 140 4.26 % 2.32 % 3.28 % 2.12 % 2.45 % 1.98 %

25 280 7.05 % 2.55 % 4.14 % 2.16 % 3.61 % 2.06 %

30 560 7.56 % 3.56 % 5.96 % 2.47 % 4.57 % 2.12 %

50 2000 8.69 % 7.11 % 7.24 % 5.08 % 6.04 % 4.53 %

100 10000 15.07 % 11.89 % 10.31% 7.97 % 9.11 % 7.58 %

Speedup and performance relative to the number of tasks in a cluster:

configuration performance after 10 000 iterations per cluster

clusters tasks late jobs avg error std dev speed speedup

1 1000 28.1 6.88 % 2.38 % 423 s 1.00 ×

5 200 22.7 5.95 % 2.05 % 275 s 1.54 ×

10 100 20.3 4.13 % 1.61 % 189 s 2.24 ×

20 50 13.9 3.02 % 1.54 % 104 s 3.28 ×

30 33 14.4 3.15 % 1.51 % 67 s 6.31 ×

40 25 16.2 3.61 % 1.45 % 49 s 8.63 ×

50 20 18.7 4.03 % 1.43 % 36 s 11.65 ×

Experiments & Conclusions


