UCL /5 A MACHINE LEARNING APPROACH TO STOCHASTIC RESOURCE CONTROL UCL

Université Université

/—[Motivationsj N /—[Additional Improvements] N

4) We applied several additional improvements to the core solution method: ~ ~

e Resource allocation problems arise in many real-world domains, e.g.:
production control, personnel / fleet / inventory management, schedul-
ing of computer programs, controlling a cellular mobile network.

e They are usually strongly NP-hard, e.g.., TSP and JSP, and they do
not have any good polynomial time approximation algorithm, either.

original formulation

e Action space decomposition: in order to decrease the available actions
in the states, the action space was decomposed (figure on the right side).

choose a
resource and
an operation

e Rollout methods: to guide the initial exploration and to gather samples e——
for the regression, limited-lookahead rollout algorithms were applied.

choose an
operation

.. _ W, : : .. .
e Moreover, real-world problems are often large-scale, there are significant e Clustering: in order to divide the problem into several smaller subprob- I
. > Tesource
uncertainties and the environment may even change over time. 4 h lems, we clustered the tasks according to their expected slack times.)
e The extension of most classical algorithms, such as “branch & cut” or , , e Distributed sampling: we can exploit having more than one processors. V)
“constraint propagation”, to the stochastic case is non-trivial. - N N N
. . time (tasks)
e We suggest machine learning approaches to handle these problems. e T @ processors ® processors
_ _/ o~ O qpa~ SO -0 . sacktme .
\ I = Sl S lem M 200 99
______ -0 0 X s | | |
neighbors of x projections base policy projections time (tasks) precedence constraints global value function local value functions
/—[Markowan Resource Controlj N < < <
- J
We showed that stochastic resource allocation problems can be reformulated as Markov decision processes, \
more precisely, as stochastic shortest path problems, with favorable properties, e.g., all policies are proper. /—[Experiments & Conclusions) ~
An adaptive sampling based method was applied, by which the optimal - o
value function is iteratively approximated. The updates are performed at 7 o The method has proven to be very efficient Performance on benchmark datasets of hard flexible job-shop problems:
the end of each episode (a simulation of the resource allocation process). o N on benchmark and industrial problems. benchmark | 1000 iterations 5000 iterations 10000 iterations
o dataset flexib| avg err std dev avg err std dev avg err std dev
. . . . S T e e : e [t outperformed most previous algo-
Sampling and Regression Based Reinforcement Learning e | , P , P & sdata 1.0 854 7% 5.02% 569% 461% 357% 443 %
| Initialize O, £ o N y, rithms on hard job-shop problems (top). edata 12 | 1237% 826% 803% 6.12% 526% 4.92%
. Initialize)y, Ly, 7 and let 7 = 1.
) Repeat (for cach cpisode) . N ~ it slheres el performaniee om ot rdata 20 | 1614% 798% 1141% 737% 714% 538%
. vdata 50 | 1018% 591% 773% 473% 349% 356 %
3. Set 7 to a soft and semi-greedy policy w.r.t. (i1, e.g,, e ulated industrial problem (middle). enee 25 | 151% 699 RalY 50% i%% inv
mi(x,a) = exp(—Q;_1(x,a)/T exp(—Qi_1(xz,b T]. T ' '
A SZ'(’ 1) » p(@ 1(7)/)/ [Z?EA(@ p(@ 11(7)/) | - Clustermg not Only resulted in Speedup Performance on industry-related problems (simulation of a real factory):
. imulate a state-action trajectory from x using policy ;. et : :
_ J y .. 5 p. v but also in performance SAlILS (dOWD>' configuration | 1000 iterations 5000 iterations 10000 iterations
5. For j =1t; to 1 (for each state-action pair in the episode) do _ /
6l Determine the features of the state-action pair, y; _ h(a:§ | a;) Advantages over previous approaches: machs tasks| avg err std dev avg err std dev avg err std dev
7. Compute the new action-value estimation for z* and a', e.g., 4 h : : o : ¢ A 401% 2.24% 303% 192% 212% 18 %
Z. o o - / Z. o o It is general, since it 1s applicable to a 16 140 | 426% 232% 328% 212% 245% 198 %
Zj = (1 _(%’)Qz‘—l(%‘a aj) + i [9(5’7]'7 aj))_|_ e mlnbeA(x§+1) Qi—l(xjﬂa b)] : e oI G@é{% large class of resource control problems. 95 290 705% 255% 414% 216% 361% 2.06 %
8. End loop (end of state-action processing Lk, .
9 Uodat | r " PN 1 b It is [TQ e [t takes uncertainties into account. U 200 RES BEO% BEE% 2Av 4sv 2T
- pdate sample set £;_; with {(y},2}) : j = 1,...,t;}, the result is £;. = 50 2000 | 869% 711% 724% 508% 6.04% 453%
10. Calculate (); by fitting a smooth regression function to the sample of L;. wl W o T g e The method can also quickly adapt to 10010000 | 1507 % 1189% 1031% 797% 911% 758 %
11. Increase the episode number, ¢, and decrease the temperature, 7. i TTROR :ﬂil]]]]_ oooooooooooooo - -
. : b : " : b .. - A8 dndYgn i disturbances and environmental Changes. Speedup and performance relative to the number of tasks in a cluster:
12. Until some terminating conditions are met, e.g., ¢ reaches a limit \/\ .
or the estimated approximation error to Q* gets sufficiently small. DB O OO e There are theoretical guarantees of ap- configuration performance after 10000 iterations per cluster
Output: the action-value function @); (or 7(Q;), e.g., the greedy policy w.r.t. Q). _) proximating the global optimal solution. clusters tasks | late jobs avgerror std dev speed speedup
, , 1 1000 28.1 688% 238% 423s 1.00 x
. _ o [t scales-wellwith the size of the problem o Py SET DB Be | 1B
The notations of the pseudo-code are as follows: variable ¢ is the episode number, ¢; is the length of episode : : ‘ o o ’
. without dramatic performance losses. 10 100 20.3 413% 161% 189s 224 x
v and j is a parameter for time-steps inside an episode. The Boltzmann temperature is denoted by 7, m; is
: . 1 : : : o ; : ; e [t can use domain specific knowledge, as 2 o0 159 M Letw M A
the control policy applied in episode 7 and x(is the initial state. State x. and action a’ correspond to step ! 20 e ia S15% 15l % e 631
T . - - - . 7 J - well (e.g., in the rollouts or explorations) | SO i o
9 in episode 2. Function h computes features for state-action pairs while ~; denotes learning rates. Finally, o ' 40 25 16.2 361% 145% 49s 863 X
L; denotes the regression sample and @); is the fitted (state-action) value function in episode s. e [t is an iterative, any-time solution. 50 20 18.7 403% 143 % 36s 11.65 x
- J

