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Abstract— The paper studies binary classification and aims
at estimating the underlying regression function which is the
conditional expectation of the class labels given the inputs. The
regression function is the key component of the Bayes optimal
classifier, moreover, besides providing optimal predictions, it
can also assess the risk of misclassification. We aim at building
non-asymptotic confidence regions for the regression function
and suggest three kernel-based semi-parametric resampling
methods. All of them guarantee confidence regions with exact
coverage probabilities and they are strongly consistent.

I. INTRODUCTION

Classification is one of the principal problems of statistical
learning theory [1], and it is widely applied across several
fields [2], for example, in quantized identification [3]. A
typical aim of classification is to minimize the probability of
misclassification. If the (joint) probability distribution of the
input-output pairs was known, the misclassification probabil-
ity could be minimized by the Bayes optimal classifier. This
classifier can be written as the sign of the regression function
which is the conditional expectation of the labels given the
inputs. The regression function can also help to assess the
risk of misclassification. Estimating the regression function
can be seen as identifying a (nonlinear) function from a
sample of input and quantized (binary) output measurements.

Besides providing point-estimates of the regression func-
tion, for which there are several methods available [1], [4],
it is also an important problem to bound the uncertainty of a
candidate model. We will provide these bounds in the form
of confidence regions. Note that such regions also induce
confidence sets for the misclassification probabilities.

In this paper, inspired by recent developments in Finite-
Sample System Identification (FSID) [5], [6], [7], [8], we
suggest three semi-parametric kernel-based [2] resampling
algorithms to build non-asymptotic confidence regions for
the regression function of binary classification. We argue that
each of these algorithms provides confidence sets with exact
coverage probabilities, and they are strongly consistent, that
is any false model will be (almost surely) excluded from
the confidence regions, as the sample size tends to infinity.
As the suggested algorithms build on distribution-free results
and work directly with the samples, the constructions are
not restricted to models parametrized by finite dimensional
vectors, but also allow infinite dimensional model classes.
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II. PRELIMINARIES

A. Binary Classification

Let (X,X ) be a measurable space and Y .
= {+1,−1}. Let

D .
= {(xi, yi)}ni=1 be an i.i.d. (independent and identically

distributed) sample from an unknown probability distribution
P on X×Y, where xi ∈ X is the input and yi ∈ Y is the label
of the i th observation. We call any (measurable) function
g : X→ Y a classifier. The Bayes optimal classifier, g∗, is a
classifier which minimizes the risk, R(g)

.
= E

[
L(Y, g(X))

]
,

where L is an arbitrary loss function, that is a Y2 → [0,∞)
function penalizing label mismatch. Here, we focus on the
0/1 loss which is an arch-typical choice [1]. It is defined by
L(y, g(x))

.
= I (g(x) 6= y), where I is the indicator function.

The corresponding risk is simply R(g) = P (g(X) 6= Y ).
Since the joint distribution of the inputs and outputs, P , is

unknown, we typically aim at estimating g∗. At any x ∈ X,
g∗(x) = sign

(
E
[
Y |X = x

])
, if it is feasible [4]. Note

that the regression function f∗(x)
.
= E

[
Y |X = x

]
contains

even more information than the Bayes optimal classifier, g∗,
e.g., f∗(x) also encodes the probability of misclassification
of x. Therefore, it is of high importance to estimate f∗.

B. Reproducing Kernel Hilbert Spaces

A Hilbert space H of f : X → R type functions, with
inner product 〈 ·, · 〉H, is a Reproducing Kernel Hilbert Space
(RKHS) if the point evaluation functional, δx : f → f(x),
is bounded, or equivalently continuous, for all x ∈ X [2].
Then it can be proven, by applying the Riesz representation
theorem, that there uniquely exists k : X2 → R, the kernel
of H, such that for all x ∈ X, k(·, x) ∈ H and f(x) =
〈 f, k(·, x) 〉H, which is called the reproducing property. In
particular 〈 k(·, x), k(·, y) 〉H = k(x, y) thus k is symmetric
and positive definite. The converse is also true by the Moore-
Arnoszjan theorem [9]: for each symmetric, positive definite
function there uniquely exists an RKHS. Typical examples
of kernels are the Gaussian kernel, k(x, y) = exp(−‖x−y‖

2

2σ2 )
with σ > 0, and the polynomial kernel, k(x, y) = (c+xTy)d

with c ≥ 0 and d ∈ N. For a given sample D, the Gram
matrix, K ∈ Rn×n, is defined as Ki,j

.
= k(xi, xj ), which is

a (data-dependent) symmetric, positive semidefinite matrix.
Let X be a metric space and Z ⊆ X be a compact set. Let

C(Z) denote the space of continuous Z → R type functions
with the uniform (sup) norm. Let us consider the subspace
H(Z)

.
= span

{
K(·, z) : z ∈ Z

}
⊆ H, which contains all

finite linear combinations of {K(·, z)}. A kernel is universal
if for each compact set Z ⊆ X, function f ∈ C(Z), and
ε > 0, there exists an approximation h ∈ H(Z), such that
supz∈Z |h(z)− f(z) | ≤ ε, i.e., H(Z) is dense in C(Z).



C. Kernel Mean Embedding of Distributions

The idea of kernel mean embedding is to map distributions
to elements of an RKHS with the help of the kernel [10].
Let (X,X ) be a measurable space and let M+(X) denote
the space of all probability measures on it. The kernel mean
embedding of these probability measures into an RKHS H,
endowed with a (measurable) kernel k : X× X→ R, is

µ : M+(X)→ H and P →
∫
k(x, ·)P (dx), (1)

assuming the integral is well-defined (e.g., k is bounded).
A kernel is called characteristic if the embedding, µ, is

injective (e.g., the Gaussian kernel). In this case the embed-
ded element captures all informations about the distribution,
e.g., for all P,Q ∈M+(X), ‖µP − µQ‖H = 0 if and only if
P = Q. Hence, the embedding induces a metric on M+(X).

The kernel mean embedding has nice properties even when
the kernel is not characteristic. For example, for polynomial
kernels with degree d it holds that ‖µP − µQ‖H = 0 if and
only if the first d moments of P and Q are the same.

Furthermore, many fundamental operations can be per-
formed in H instead of dealing with the distributions them-
selves, e.g., Smola showed [10] that EP [f(X)] = 〈f, µP 〉H.

The underlying probability distribution of the sample is
typically unknown, therefore, the kernel mean embedding
should be estimated from empirical data. An important tool
to prove the validity of such approaches is the Strong Law of
Large Numbers (SLLN) for random elements taking values
in a separable Hilbert space H. Let {Xn} be a sequence of
independent random elements taking values in H. If

∞∑
n=1

Var(Xn)

n2
< ∞ (2)

where Var(X)
.
= E

[
‖X − E[X] ‖2H

]
, then, as n→∞,

1

n

n∑
k=1

(
Xk − E[Xk]

) a.s.−−−→ 0, (3)

in the metric induced by ‖ · ‖H, see [11, Theorem 3.1.4].

III. RESAMPLING FRAMEWORK

In this section we develop a framework to provide non-
asymptotically guaranteed uncertainty quantification resam-
pling algorithms for the “regression function”, namely, the
conditional expectation of the labels given the inputs. The
regression function is a fundamental object to study, for
example, its signs at various inputs define the Bayes optimal
classifier which achieves minimal misclassification risk.

Assume we have a distribution on S .
= X × Y, where X

and Y are the input and output spaces, respectively. Space
X does not have to be a subset of Rd, it can be a general
measurable space, while Y .

= {+1,−1}, since we consider
binary classification. Then, the regression function satisfies

f∗(x)
.
= E

[
Y | X = x

]
= P(Y = +1 | X = x ) − P(Y = −1 | X = x )

= 2 · P(Y = +1 | X = x ) − 1. (4)

Given f∗, the Bayes optimal classifier is [4]

g∗(x)
.
= sign(f∗(x)), (5)

where “sign” denotes the signum function. Note that in (5),
for simplicity, we assumed that P( f∗(X) 6= 0 ) = 1.

We assume that we are given an (indexed) family of
possible regression functions that also contains f∗, that is

f∗ ∈ F
.
=
{
fθ : X→ [−1,+1 ] | θ ∈ Θ

}
. (6)

For simplicity, we refer to θ ∈ Θ as a parameter, but Θ
can be an arbitrary set, even an infinite dimensional vector
space. The true parameter is denoted by θ∗, that is fθ∗ = f∗.

We assume that F contains square integrable functions
w.r.t. the input distribution, and that the parametrization is
injective, i.e., θ1 6= θ2 implies fθ1 6= fθ2 on a set having
nonzero measure w.r.t. the input distribution. In other words,

‖ fθ1 − fθ2‖2P
.
=

∫
X

(fθ1(x)− fθ2(x))2PX(dx) 6= 0, (7)

if θ1 6= θ2, where PX is the distribution of the inputs.
Note that f∗ in itself does not determine the joint probabil-

ity distribution generating the observations, namely, it does
not contain information about the (marginal) distribution of
the inputs, therefore, our approach is semi-parametric.

As an example, consider the case where the “+1” class
has probability density function ϕ1, while the “−1” class
has density ϕ2. For each element of the sample, there is a p
probability to see an element with “+1” label and a 1 − p
probability to see a measurement with “−1” label. Then,

E
[
Y | X = x

]
=

pϕ1(x)− (1− p)ϕ2(x)

pϕ1(x) + (1− p)ϕ2(x)
, (8)

thus, if we have candidate densities for inputs with various
labels and we know their mixing probability, then we can
compute the regression function. However, observe that the
regression function does not determine ϕ1, ϕ2 and p.

A. Resampling Labels

The observed i.i.d. input-output dataset is denoted by

D0
.
= ((x1, y1), . . . , (xn, yn)), (9)

which can also be seen as a Sn-valued random vector.
One of our core ideas is that if we are given a candidate

θ, then we can generate (resample) alternative labels for the
available inputs using the distribution induced by fθ, that is

Pθ(Y = +1 | X = x ) =
fθ(x) + 1

2
,

Pθ(Y = −1 | X = x ) =
1− fθ(x)

2
, (10)

which immediatelly follow from our observations in (4).
Given a θ, we can generate m− 1 alternative samples by

Di(θ)
.
= ((x1, yi,1(θ)), . . . , (xn, yi,n(θ))), (11)

for i = 1, . . . ,m − 1, where for all i, j, label yi,j(θ) is
generated randomly according to the conditional distribution
Pθ(Y | X = xj ). For notational simplicity, we extend this
to D0, that is ∀ θ : D0(θ)

.
= D0 and ∀ j : y0,j(θ)

.
= yj .



Naturally, for all i, dataset Di(θ) can also be identified
with a random vector in Sn, and D1(θ), . . . ,Dm−1(θ) are
always conditionally i.i.d., given the inputs, {xj}.

Observe that, in case θ 6= θ∗, the distribution of D0 is in
general different than that of Di(θ), ∀ i 6= 0; while D0 and
Di(θ∗) have the same distribution for all possible i.

B. Ranking Functions

The proposed algorithms will be defined via rank statistics
based on suitably defined orderings. A key concept will
be the “ranking function” which, informally, computes the
rank of its first argument among all of its arguments based
on some underlying ordering principle. Let (A,A) be a
measurable space. A (measurable) function ψ : Am → [m ],
where [m ]

.
= {1, . . . ,m}, is called a ranking function if

for all (a1, . . . , am) ∈ Am it satisfies the two properties

(P1) For all permutations µ of the set {2, . . . ,m}, we have

ψ
(
a1, a2, . . . , am

)
= ψ

(
a1, aµ(2), . . . , aµ(m)

)
,

that is the function is invariant with respect to reorder-
ing the last m− 1 terms of its arguments.

(P2) For all i, j ∈ [m ], if ai 6= aj , then we have

ψ
(
ai, {ak}k 6=i

)
6= ψ

(
aj , {ak}k 6=j

)
, (12)

where the simplified notation is justified by (P1).

We refer to the output of the ranking function ψ as the
rank. An important observation about ranking exchangeable
random elements is given by the following lemma. (Recall
that if a sample is i.i.d., then it is also exchangeable.)

Lemma 1: Let A1, . . . , Am be exchangeable, almost
surely pairwise different random elements taking values in
A. Then, ψ

(
A1, A2, . . . , Am

)
has discrete uniform distribu-

tion: for all k ∈ [m ], the rank is k with probability 1/m.

The proofs, except that of Theorem 1, are omitted due to
lack of space, but will be included in an extended version.

C. Confidence Regions

Inspired by FSID methods [5], [6], [7], the core idea of the
proposed algorithms is to compare the original dataset with
alternative samples which are randomly generated according
to a given hypothesis. The comparison will be based on
the rank of the original dataset among all the available
samples, therefore, the ranking function is in the heart of
all proposed algorithms. The differences between various
algorithms primarily come from the various ways they rank.

Lemma 1 will be one of our main technical tools, however,
it requires almost surely different elements, which is not
guaranteed for {Dk(θ)}. This will be resolved by random
tie-breaking, similarly to the solution of [6]. To make this
precise, consider a permutation π of the set {0, . . . ,m− 1},
generated randomly with uniform distribution, and indepen-
dently of {Dk(θ)}. Then, obviously π(0), . . . , π(m− 1) are
almost surely different, exchangeable random variables.

We extend datasets {Dk(θ)} with {π(k)}. As a shorthand
notation we introduce, for k = 0, . . . ,m− 1, the sample

Dπk (θ)
.
=
(
Dk(θ), π(k)

)
, (13)

which now takes values in A .
= Sn × {0, . . . ,m− 1}.

Given a ranking function ψ, defined on the codomain
(range) of the extended datasets, and hyper-parameters p, q ∈
[m ] with p ≤ q, a confidence region can be defined by

Θψ
%
.
=
{
θ ∈ Θ : p ≤ ψ

(
Dπ0 , {Dπk (θ)}k 6=0

)
≤ q

}
, (14)

where % .
= (m, p, q) denotes the applied hyper-parameters,

with m ≥ 1 being the total number of available samples,
including the original one as well as the generated ones.

Our main abstract result about the coverage probability of
the true parameter of such confidence regions is

Theorem 1: We have for all ranking function ψ and hyper-
parameter % = (m, p, q) with integers 1 ≤ p ≤ q ≤ m,

P
(
θ∗ ∈ Θψ

%

)
=

q − p+ 1

m
. (15)

Proof: First note that D0,D1(θ∗), . . . ,Dm−1(θ∗) are
conditionally i.i.d., given the inputs, {xk}, therefore they are
also exchangeable. As π(0), . . . , π(m−1) are exchangeable,
as well, and π is generated independently of the datasets, we
have that Dπ0 ,Dπ1 (θ∗), . . . ,Dπm−1(θ∗) are exchangeable, too,
furthermore, they are almost surely pairwise different.

Then, the theorem follows directly from Lemma 1, as the
lemma implies that the rank of Dπ

0 takes each value in [m ]
with probability exactly 1/m, therefore, the probability that
its rank is between p and q is exactly ( q − p+ 1 ) /m.

Theorem 1 shows that the confidence regions constructed
as (14) have exact coverage probabilities, independently of
the underlying probability distribution generating the (i.i.d.)
data and for all ranking functions (satisfying P1 and P2).
Observe that it is a non-asymptotic result, the exact coverage
probability is valid irrespective of the sample size, n. Also
note that the hyper-parameters are user-chosen, therefore, any
(rational) confidence probability in (0, 1) can be achieved.

This theorem is very general and hence also allows some
degenerate constructions, like the ones that do not depend on
the data at all, only on the tie-breaking random permutation,
π. Such regions are called purely randomized. In order to
avoid such constructions, we should analyze other properties
of the methods. Besides having guaranteed confidence, one
of the most important properties an algorithm can have is
(strong) consistency, namely, the property that, as the sample
size tends to infinity, any (fixed) false parameter will be
eventually (a.s.) excluded from the confidence region.

Formally, a method is strongly consistent if

P
( ∞⋂

k=1

∞⋃
n=k

{
θ ∈ Θψ

%,n

})
= 0, (16)

for all parameter θ 6= θ∗, θ ∈ Θ, where Θψ
%,n denotes the

confidence region constructed based on a sample of size n.
Obviously, purely randomized regions are not consistent.



IV. KERNEL-BASED CONSTRUCTIONS

In this section we propose three kernel-based algorithms
to construct exact, non-asymptotic confidence regions based
on the framework of Section III. All of these methods have
exact coverage probabilities and are strongly consistent.

A. Algorithm I (Neighborhood Based)

The main idea of Algorithm 1 is that we can estimate the
regression function, f∗, based on the available (quantized)
dataset, D0, by the kNN (k-nearest neighbors) algorithm.
We can similarly do so based on the alternative datasets,
{Dk(θ)}k 6=0. Then, we can compare the estimate based on
D0 to the ones coming from the alternative samples.

For Algorithm I, we assume that X ⊆ Rd, X is compact,
the support of the (marginal) distribution of the inputs, PX,
is the whole X, furthermore, PX is absolutely continuous.

Let us introduce functions, for i = 0, . . . ,m− 1, as

f
(i)
θ,n(x)

.
=

1

kn

n∑
j=1

yi,j(θ) I
(
xj ∈ N(x, kn)

)
, (17)

where I is an indicator function (its value is 1 if its argument
is true, and 0 otherwise), N(x, kn) denotes the kn closest
neighbors of x from {xj}nj=1, and kn ≤ n is a constant
(window size), which can depend on n. We use the standard
Euclidean distance as a metric on X (to define neighbors).
Since the inputs, {xj}, have a distribution that is absolutely
continuous, there is zero probability of ties in N(x, nk).

Let us denote the L2(X) distance of the tested function,
fθ, from its empirical estimate based on sample Di(θ) by

Z(i)
n (θ)

.
= ‖f (i)θ,n − fθ ‖

2
2 =

∫
X

(
f
(i)
θ,n(x)− fθ(x)

)2
dx. (18)

We can define the rank of Z(0)
n (θ) among {Z(i)

n (θ)} as

Rn(θ)
.
= 1 +

m−1∑
i=1

I
(
Z(0)
n (θ) ≺π Z(i)

n (θ)
)
, (19)

where I is an indicator function, and binary relation “≺π” is
the standard “<” with random tie-breaking. More precisely,
as before, let π be a random (uniformly chosen) permutation
of the set {0, . . . ,m − 1}. Then, given m arbitrary real
numbers, Z0, . . . , Zm−1, we can construct a strict total order,
denoted by “≺π”, by defining Zk ≺π Zj if and only if
Zk < Zj or it both holds that Zk = Zj and π(k) < π(j).

Therefore, in case of Algorithm I, the ranking function is

ψ
(
Dπ0 , {Dπk (θ)}k 6=0

)
= Rn(θ). (20)

It can be shown that for any fixed false parameter θ, Z(0)
n (θ)

tends to have the largest rank as the sample size increases,
thus, we fix p = 1 and only exclude parameters which lead
to high ranks. That is, using (14), the confidence set is

Θ(1)
%,n

.
=
{
θ ∈ Θ : Rn(θ) ≤ q

}
, (21)

where % .
= (m, q) are hyper-parameters with 1 ≤ q < m.

The main theoretical results can be summarized as

Theorem 2: The coverage probability of the region is

P
(
θ∗ ∈ Θ(1)

%,n

)
= q /m, (22)

for any sample size n. Moreover, if {kn} are chosen such that
kn → ∞ and kn/n → 0, as n → ∞, then the confidence
regions are strongly consistent, as defined by (16).

Regarding the computation aspects of Algorithm I note
that {f (i)θ,n} can be calculated exactly based on the available
data, as they are piece-wise constant functions. The distance
‖f (i)θ,n− fθ ‖22 can also be calculated from the available data.
Nevertheless, one may use the Monte Carlo approximation

‖f (i)θ,n − fθ ‖
2
2 ≈

1

`n

`n∑
k=1

(
f
(i)
θ,n(x̄k)− fθ(x̄k)

)2
, (23)

where `n is a constant and {x̄k} are i.i.d. random variables
having uniform distribution on X. Note that we know from
the strong law of large numbers (SLLN) that the sum in (23)
almost surely converges to ‖f (i)θ,n − fθ ‖22, as `n →∞.

It is relatively easy to see that using the approximation
in (23) does not affect the exact coverage probability of the
algorithm. Moreover, if `n → ∞ as n → ∞, then one can
also show the strong consistency of the approximated variant.
Hence, the theoretical properties of Theorem 2 remain valid,
but the sizes of regions are affected by the approximation.

The kNN estimator, which is in the core of Algorithm I, is
a simple kernel method that uses a variable bandwidth rect-
angular window. A natural generalization of this approach is
to apply other kernels for local averaging. Given any kernel
k(·, ·), e.g., Gaussian, we can redefine functions {f (i)θ,n} as

f
(i)
θ,n(x)

.
=

1∑n
l=1 k(x, xl)

n∑
j=1

yi,j(θ) k(x, xj), (24)

which leads to alternative confidence region constructions.
These variants typically also build confidence regions with

exact coverage probabilities. Moreover, as a wide variety of
such kernel estimates are strongly consistent, under some
technical conditions [4], and the generalized Algorithm I
inherits these properties, the resulting confidence sets are also
strongly consistent. The corresponding coverage and consis-
tency theorems could be stated analogously to Theorem 2.

B. Algorithm II (Embedding Based)

The core idea of Algorithm II is to embed the distribution
of the original sample and that of the alternative ones in
an RKHS using a characteristic kernel. If the underlying
distributions are different, then the original dataset results
in a different element than the one the alternative datasets
are being mapped to, which can be detected statistically.

For Algorithm II, let (X,X ) be a measurable space, and
H be a separable RKHS containing S → R type functions
with a (measurable) bounded and characteristic kernel. If
X = Rd, then S = Rd × {+1,−1}, and we can use, e.g.,
Gaussian or Laplacian kernels, which are characteristic [10].



Let us introduce the following kernel mean embeddings

h∗(·)
.
= E

[
k(·, S∗)

]
and hθ(·)

.
= E

[
k(·, Sθ)

]
, (25)

where S∗ and Sθ are a random elements from S; variable S∗
has the “true” distribution of the observations, while Sθ has
a distribution where the output, Y , is generated according
to the conditional probability (10), parametrized by θ, while
the marginal distribution of the input, X , remains the same.

Since the kernel is bounded, E
[√

k(Sθ, Sθ)
]
< ∞, for

all θ, which ensures that {hθ} exist and belong to H [10].
Because the kernel is characteristic, we know that hθ = h∗

if and only if θ = θ∗. Now, let us introduce the following
empirical versions of the embedded distributions,

h
(i)
θ,n(·) .

=
1

n

n∑
j=1

k(·, si,j(θ)), (26)

for i = 0, . . . ,m − 1, where si,j(θ)
.
= (xj , yi,j(θ)); and

recall that for i = 0 (original sample), we have yi,j(θ) = yj .
In other words, si,j(θ) has the same distribution as Sθ for
i 6= 0 and its distribution is the same as that of S∗ for i = 0.

Let β ∈ R be a constant that satisfies | k(x, y) | ≤ β for all
x, y. Then, obviously |hθ(x) | ≤ β for all x, as well. Now,
applying the reproducing property, we have the bound

Var
(
k(·, S)

)
= E

[
‖ k(·, S)− h(·) ‖2H

]
≤ E

[
‖ k(·, S) ‖2H

]
+ E

[
‖h(·) ‖2H

]
+ 2E

[
| 〈 k(·, S), h(·) 〉H |

]
≤ E

[
‖ k(·, S) ‖2H

]
+ ‖h(·) ‖2H + 2E

[
|h(S) |

]
≤ E

[
〈 k(·, S), k(·, S) 〉H

]
+ ‖h(·) ‖2H + 2β

= E
[
k(S, S)

]
+ ‖h(·) ‖2H + 2β

≤ 3β + ‖h(·) ‖2H < ∞, (27)

where S is either S∗ or Sθ, and h(·) .
= E

[
k(·, S)

]
.

Then, we know from the SLLN for Hilbert space valued
elements that ‖h(i)θ,n − hθ ‖H

a.s.−−−→ 0, as n→∞, for i 6= 0,
and we also have that ‖h(0)θ,n − h∗ ‖H

a.s.−−−→ 0, as n→∞.
Now, we can define the {Z(i)

n (θ)} variables as

Z(i)
n (θ)

.
=

m−1∑
j=0

‖h(i)θ,n − h
(j)
θ,n ‖

2
H, (28)

i.e., the total (cumulative) distance of h(i)θ,n from all other
functions. Then, we can construct the confidence set as (21).

Theorem 3: The confidence regions of Algorithm II have

P
(
θ∗ ∈ Θ(2)

%,n

)
= q /m, (29)

for all n; and they are strongly consistent if m > 2.

The squared distance of the empirical versions of the
embeddings ‖h(i)θ,n−, h

(j)
θ,n ‖2H can be computed by applying

the reproducing property of the kernel and the Gram matrix
of the sample si,1(θ), . . . , si,n(θ), sj,1(θ), . . . , sj,n(θ).

Algorithm II has a nice theoretical interpretation as com-
paring embedded distributions in an RKHS. However, as the

Gram matrices required to compute the {Z(i)
n (θ)} variables

depend on θ, this method has a large computational burden,
hence the importance of Algorithm II is mainly theoretical.
Nevertheless, motivated by its ideas, in the next section we
suggest a computationally much lighter algorithm.

C. Algorithm III (Discrepancy Based)

Algorithm III follows the intuitions behind Algorithm II,
but ensures that we can work with the same Gram matrix for
all θ. Moreover, it has a simpler construction for {Z(i)

n (θ)},
which also makes it computationally more appealing.

For Algorithm III, let (X, d) be a compact Polish metric
space (i.e., complete and separable), and assume that each
f ∈ F is continuous (additionally to the assumptions of
Section III). Let H be a separable RKHS containing X→ R
functions with a (measurable) bounded and universal kernel.

Let us introduce the notation εi,j(θ)
.
= yi,j(θ)− fθ(xj),

for i = 0, . . . ,m − 1 and j = 1, . . . , n. Note that if i 6= 0,
εi,j(θ) has zero mean for all j, as fθ(xj) = Eθ

[
yi,j(θ) |xj

]
.

The fundamental objects of Algorithm III are

Z(i)
n (θ)

.
=

∥∥∥∥ 1

n

n∑
j=1

εi,j(θ)k(·, xj)
∥∥∥∥2
H
, (30)

for i = 0, . . . ,m − 1. Observe that Z(i)
n (θ) can be easily

computed using the Gram matrix Ki,j
.
= k(xi, xj), as

Z(i)
n (θ) =

1

n2
εTi (θ)K εi(θ), (31)

using the notation εi(θ)
.
= (εi,1(θ), . . . , εi,n(θ))T.

From this point, we follow the construction of Algorithms
I and II, namely, we define the ranking function as (19), and
the confidence region as (21), but naturally we apply our new
functions (30) as the definition of the {Z(i)

n (θ)} variables.

Theorem 4: The confidence regions of Algorithm III have

P
(
θ∗ ∈ Θ(3)

%,n

)
= q /m, (32)

for any sample size n; and they are strongly consistent.

V. NUMERICAL EXPERIMENTS

Numerical experiments were carried out to demonstrate
the proposed algorithms. In the presented test scenario the
joint probability distribution of the data was assumed to
be the mixture of two Laplace distributions with different
locations, µ1, µ2, but with the same scale λ. It was assumed
that with probability p we observe the “+1” class, and with
1− p we see an element of the “−1” class. Selecting p, µ1,
µ2 and λ induces a regression function, e.g., see (8).

The confidence regions were built for parameters p and λ,
while the location parameters were fixed, µ1 = 1 and µ2 =
−1, to allow two dimensional figures. Figure 1 demonstrates
the obtained ranks, {Rn(θ)}, for various θ = (p, λ) using
(a) Algorithm I with kNN (15 neighbors), (b) Algorithm I
with a kernel, (c) Algorithm II, and (d) Algorithm III. The
kernel was always Gaussian with σ = 0.125. Darker colors
indicate smaller ranks, therefore, the darker the color is, the
more likely the parameter is included in a confidence region.
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(d) Algorithm III (Gauss) Ranks

Fig. 1. The ranks of the reference element for various parameters, indicating
how likely they are included in a confidence set. The model was a mixture of
Laplace distributions. The true mixing probability p∗ = 1/2 (x-axis) and the
scale parameter λ∗ = 1 (y-axis), they are denoted by a “?”, were estimated
from n = 500 observations. The kernel was Gaussian with σ = 0.125.

The true parameter was θ∗ = (p∗, λ∗) with p∗ = 1/2 (x-
axis) and λ∗ = 1 (y-axis). The sample size was n = 500 and
m = 40 samples were used. The regions were evaluated on
a grid. The algorithms provide comparable confidence sets
with Algorithm I (kNN) being the best for the current setup.

Note that in this special example it is possible to construct
individual confidence regions for true parameter values p∗

and λ∗ based on standard results. One can use, e.g., Hoeffd-
ing’s inequality to get confidence intervals for probability p∗,
and λ∗ can be estimated based on the fact that the variance
of the observations, for both classes, is 2(λ∗)2. Nevertheless,
such approaches need the specific interpretations of the
parameters: on how they influence the observations. Further-
more, even in this very special case it is not obvious how
to construct a joint confidence region for (p∗, λ∗ ). Simply
intersecting the two confidence tubes (i.e., if we extend the
confidence intervals for p∗ and λ∗ to R2, they define two
infinite “stripes”, a vertical and a horizontal one) produces
a set with a lower confidence than that of the original sets,
and hence it ultimately leads to conservative regions.

On the other hand, the suggested three algorithms do not
presuppose any interpretation of the tested parameters, apart
from the fact that they determine a regression function. They
do not need a fully parametrized joint distribution, indeed,
the regression function is compatible with infinitely many
joint distributions having widely different (marginal) input
distributions. Furthermore, if θ∗ ∈ Rd, then the algorithms
automatically build joint and non-conservative confidence
sets. Hence, another advantage of the presented framework,
apart from its strong theoretical guarantees, is its flexibility.

VI. CONCLUSIONS

In this paper we addressed the problem of building non-
asymptotic confidence regions for the regression function of
binary classification, which is a key object defined as the
conditional expectation of the class labels given the inputs.

The main idea was to test candidate models by generating
alternative samples based on them, and then computing the
performance of a kernel-based algorithm on all samples. If
the candidate model is wrong, then the algorithm behave
differently on the alternatively generated samples than on the
original one, which can be detected statistically by ranking.

Three constructions were proposed and we argued that
all of them build confidence regions with exact coverage
probabilities, for any sample size, and are strongly consistent.
The rigorous proofs will be available in an extended paper.

The proposed framework is semi-parametric, because the
regression function does not determine the (joint) probability
distribution of the data, it does not contain information about
the (marginal) distribution of the inputs (and that is why only
the outputs are resampled in the alternative datasets).

Note that the introduced algorithms are not restricted
to specific classes of regressor functions, they can work
with any such function, as its primary role is to generate
alternative (perturbed) datasets. Consequently, the family of
regression functions can be arbitrary. It could even be the set
of all possible regression functions which satisfy (7) and the
theoretical results are still valid. If we work with an infinite
dimensional class of functions, then of course the confidence
regions cannot be explicitly constructed in practice. Never-
theless, it is still possible to test any candidate regression
function to check whether it is included in a confidence set,
or in other words, to quantify its uncertainty by computing
how compatible it is with the available observations.
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