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a b s t r a c t

Sign-Perturbed Sums (SPS) is a finite sample system identification method that constructs exact, non-
asymptotic confidence regions for the unknown parameters of linear systems without using any
knowledge about the disturbances except that they are symmetrically distributed. In the available
literature, the theoretical properties of SPS have been investigated under the assumption that the
order of the system model is known to the user. In this paper, we analyse the behaviour of SPS when
the model assumed by the user does not match the data generation mechanism, and we propose a
new SPS algorithm able to detect the circumstance that the model order is incorrect.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Estimating parameters of partially unknown systems based on
bservations corrupted by noise is a fundamental problem in sys-
em identification, signal processing and statistics at large, with
n impact on control and prediction methods in machine learn-
ng, [1–3]. Several standard approaches, such as the Least Squares
LS) method or, more generally, prediction error methods, can
e employed to obtain point estimates of the unknown parame-
ers. In many situations, for example when the safety, stability
r quality of a process has to be guaranteed, a point estimate
hould be accompanied with an uncertainty region that certifies
the accuracy of the estimate. In standard statistical system identi-
fication approaches, confidence regions are constructed based on
theoretical analyses that, typically, have only asymptotic validity,
while guarantees that are valid for a finite sample of observations
require strong assumptions on the data generation mechanism.
Along a different route, finite sample results can be obtained
by resorting to worst-case identification approaches where the
noise is guaranteed to belong to a bounded set, see e.g. [4–7].
In this approach, a region for the unknown system parameters
can be constructed by including in the region those parameter
vectors that are consistent with the observed data given all the
possible realizations of the noise in the noise bounding set. Such
methodologies construct uncertainty regions that are robust, but
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often conservative in practice. These issues have recently led to
studies, see e.g. [8] and the references therein, where the worst-
case approach is complemented with statistical knowledge to
reduce conservatism, and, on a different line of research, to a
class of statistical finite sample identification algorithms (see, e.g.,
[9–18] and [19] for a recent overview) that (i) do not rely on noise
bounding sets and (ii) are robust to statistical uncertainties.

This paper focuses on one of these statistical, finite sample
algorithm: the Sign-Perturbed Sums (SPS) algorithm, [12,20]. SPS
constructs confidence regions around the Least Squares Estimate
(LSE). In the case of Finite Impulse Response (FIR) systems, sev-
eral important properties of SPS have been proven rigorously. In
particular, we recall here that the regions constructed by SPS have
an exact coverage probability (i.e., they include the true parameter
ector with an exact and user-chosen probability) independently
f the specific, unknown, distribution of the noise, which is only
ssumed to be symmetric and forms an independent sequence.
oreover, the SPS regions are strongly consistent [20].
All the known properties of SPS, however, have been derived

nder the assumption that the true data generating system be-
ongs to the model class considered by the user, with known
odel order (at least, an upper-bound on the model order should
e known). In system identification practice, this information
ypically comes from domain knowledge or from a model order
election step. Model order selection is a standard topic in the
ystem identification literature and various supporting tools are
vailable to the user, see e.g., [1,3,21], and [22–25] for more
ecent contributions. However, this is still a difficult and the-
retically challenging problem, which might end up with an
nderestimate of the model order, [26–29].
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.1. Aim and structure of the paper

In this paper, we study the behaviour of SPS in the presence
f undermodelling and argue that, with undermodelling, the SPS
egions, which are no more exact, may induce a false sense of
onfidence in the incautious user. Thus, we introduce a modified
ersion of SPS with the following properties:

• if the system is not undermodelled, the algorithm builds
exact, non-asymptotic confidence regions for the true model
parameter vector;

• if the system is undermodelled, the algorithm has a propen-
sity to warn the user that there is a mismatch between
the data generation mechanism and the postulated model
class (see the simulation section for practical examples)
and, moreover, it certainly detects undermodelling when
the number of data points becomes large (see the asymp-
totic Theorem 5).

After a brief discussion of the related literature in the follow-
ng Section 1.2, we review the standard SPS method in Section 2.
tandard SPS in the presence of undermodelling is analysed in
ection 3 and this theoretical analysis will provide a motivation
or the new algorithm UD-SPS (SPS with Undermodelling Detec-
ion), which we introduce and study in Section 4. Computational
spects of UD-SPS are discussed in Section 5. An illustration on a
umerical example is offered in Section 6. Section 7 presents our
onclusions and outlines some future directions of research.

.2. Related literature

Although a simulation experiment on the effect of undermod-
lling on SPS was carried out in [12], the available literature on
he theory of SPS does not consider this possibility. If we look at
he broader class of statistical finite sample identification meth-
ds, the algorithm in [30] allows the user to estimate a subset
f the unknown system parameters, which makes the algorithm
pplicable also when the true model order is higher than the
elected one. However, differently from SPS, the algorithm in [30]
oes not build regions around the LS estimate, and, most impor-
antly, it can be applied only if the measurable input is known
o satisfy (or can be chosen so as to satisfy) precise statistical
roperties (e.g., the input has to be a symmetric white process,
r a filtered version of it through a known filter). In this paper,
nstead, no assumptions will be made on the input except for
tandard excitation conditions. The conference paper [31] con-
ains a preliminary exposition of the ideas of this paper, which are
ere revised, developed and accompanied with rigorous theoret-
cal derivations that were not given in [31]; the discussion on the
ractical and computational aspects and the numerical examples
re also new.

. The SPS algorithm

In this section we summarize the basic ideas behind the SPS
lgorithm, and recall the fundamental theorem about its exact
onfidence and its asymptotic properties. The concepts and re-
ults of this section are presented more comprehensively and
ade precise in [12] and [20]. The reader is referred to these
apers for more details and comparisons with related method-
logies. For an overview of SPS in the context of statistical finite
ample methods, see also [19].
 s

2

2.1. The SPS set-up

Consider the following scalar linear regression system

Yt = ϕT
t θ

∗
+ Nt , (1)

where t is the discrete time index, {Yt} is the output, {Nt} the
noise, {ϕt} is a measured d-dimensional input regressor and θ∗

=

[ b∗

1, . . . , b
∗

d ]
T is the d-dimensional parameter vector to be esti-

mated. A notable case is when (1) describes the input–output
equation of a Finite Impulse Response (FIR) system fed with an
input {Ut}, in which case ϕt = [Ut−1, . . . ,Ut−d ]

T , while more
general models such as those based on Laguerre polynomials are
also included, see Section 2.B in [12].

Following [12], in this paper we will always treat the mea-
sured input {ϕt} as deterministic, but we remark that all the
results here presented can be immediately generalized to random
inputs when they are independent of the noise {Nt}. The noise
sequence {Nt} is made up of random variables that are inde-
pendent (not necessarily identically distributed) and symmetric
about zero.2

Given n observations, i.e., Y1, . . . , Yn and ϕ1, . . . , ϕn, the Least
Squares Estimate (LSE) θ̂n is the value of θ that minimizes the sum
of the squared prediction errors {Yt − ϕT

t θ}, i.e.,

θ̂n ≜ argmin
θ∈Rd

n∑
t=1

(Yt − ϕT
t θ )

2. (2)

SPS constructs exact confidence regions around θ̂n for the un-
known true parameter θ∗.

2.2. Review of the SPS algorithm and its core ideas

It is well-known that the LSE, given by (2), satisfies the normal
equation

n∑
t=1

ϕt (Yt − ϕT
t θ ) = 0, (3)

whose solution can be written as

θ̂n =

( n∑
t=1

ϕtϕ
T
t

)−1( n∑
t=1

ϕtYt

)
(4)

provided that
∑n

t=1 ϕtϕ
T
t is invertible. The fundamental step in

SPS consists of generating m−1 sign-perturbed sums by randomly
perturbing the sign of the prediction error in the normal equation
(3); namely, for i = 1, . . . ,m − 1, define

Hi(θ ) ≜

n∑
t=1

ϕtαi,t (Yt − ϕT
t θ )

where {αi,t} are random signs, i.e., i.i.d. random variables that take
on the values ±1 with probability 1/2 each. These perturbed sums
are suitably compared with a reference sum, which is simply the
unperturbed sum

H0(θ ) ≜

n∑
t=1

ϕt (Yt − ϕT
t θ ).

For reasons discussed in [12,20], it is convenient to ‘‘normal-
ize’’ the sums H0(θ ), . . . ,Hm−1(θ ) as follows

Si(θ ) ≜ R
−

1
2

n
1
n
Hi(θ ), i = 0, . . . ,m − 1, (5)

2 For a discussion of the robustness of SPS with respect to violations of the
ymmetry assumptions, see [32].
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here Rn =
1
n

∑n
t=1 ϕtϕ

T
t and ‘‘−

1
2 ’’ denotes the inverse of the

rincipal square root. Denote by R(θ ) the rank of the element
S0(θ )∥2 ( = S0(θ )T S0(θ ) ) in the ordering of the m elements
S0(θ )∥2, ∥S1(θ )∥2, . . . , ∥Sm−1(θ )∥2, e.g., R(θ ) = 1 means that

∥S0(θ )∥2 is the smallest one, R(θ ) = 2 means that ∥S0(θ )∥2 is
the second smallest, and so on. In case of ties, the tie is broken
by randomization, see [12] for details.

A crucial fact is that, when θ = θ∗ (which, of course, we are
not aware of, as θ∗ is unknown), we have

S0(θ∗) = R
−

1
2

n
1
n

n∑
t=1

ϕtNt ,

Si(θ∗) = R
−

1
2

n
1
n

n∑
t=1

±ϕtNt

where in the last equation we have written ± instead of {αi,t} for
more intuitive visualization. Since {±Nt} is distributed exactly
s {Nt} (use the symmetry assumption about zero), S0(θ∗) and
i(θ∗) have the same distribution and there is no reason for
S0(θ∗)∥2 to be bigger or smaller than any other ∥Si(θ∗)∥2; indeed,

it can be proven rigorously that R(θ∗) is uniformly distributed
between 1 and m (i.e., ∥S0(θ∗)∥2 takes any position in the ranking
with equal probability) and this is the key for the construction of
the SPS region. Letting q be a number between 1 and m, the SPS
region (at level 1 −

q
m ) is formally defined as

ˆn ≜
{
θ : R(θ ) ≤ m

(
1 −

q
m

)}
, (6)

and the following theorem, proven as Theorem 1 in [12], follows
from the arguments above.

Theorem 1 (Exact Confidence). If N1, . . . ,Nn is a sequence of
independent random variables distributed symmetrically about zero,
then it holds that

Pr{ θ∗
∈ Θ̂n } = 1 −

q
m
. ∗

It is also of special interest for the present study that, under
ild excitation assumptions, SPS is strongly consistent, i.e., for
very ε > 0, Θ̂n is almost surely contained in the ε-ball centred
t the true parameter value θ∗ for every n large enough. The
ain idea behind the consistency of SPS is the following. If we
ompare ∥S0(θ )∥2 and ∥Si(θ )∥2 (i ̸= 0) after rewriting them as
unctions of ∆θ ≜ θ∗

− θ , we get that, when ∥∆θ∥ ̸= 0, it holds
that ∥S0(θ )∥2 > ∥Si(θ )∥2 for n large enough (in fact, the term∑n

t=1 ϕtϕ
T
t ∆θ on the left-hand side grows faster with n than the

term
∑n

t=1 ±ϕtϕ
T
t ∆θ on the right-hand side, because the latter is

tamed by the effect of the random signs). Therefore, any θ ̸= θ∗

is ruled out in the long run and removed from Θ̂n because of the
high value of R(θ ) (clearly, proving that this happens uniformly
for all the θ ’s outside any small ball requires some additional and
nontrivial underpinning).

3. SPS in the presence of undermodelling

From the previous section we know that a crucial role in the
SPS idea is played by the condition that {Yt−ϕ

T
t θ

∗
} = {Nt}, i.e., the

actual noise sequence is reconstructed from the measured data
when the true parameter is correctly guessed. This is obviously
true when the true system structure is known, which is the
standard assumption in the SPS literature.

In this section, we study the behaviour of the SPS algorithm
in a more general setting which includes the possibility that the
true data generation mechanism does not match the model that
has been postulated by the user (which we call the user-chosen
model).
3

3.1. Definition of the user-chosen model and the true data genera-
tion mechanism

3.1.1. The user-chosen model
We assume that the user has chosen the following class of

predictive models in line with the system described in Eq. (1):

Yt (θ ) = b1Ut−1 + b2Ut−2 + · · · + bd̂Ut−d̂, (7)

where {Ut} is the deterministic system input, θ = [b1, . . . , bd̂]
T

s the vector of impulse response coefficients that the user wants
o estimate, d̂ is the postulated model order.3

.1.2. The true data generation mechanism
In this paper we will consider two possible situations. The first

ituation is when the data generation mechanism matches the
ser-chosen model. In this case, we say that there is a ‘‘match-
ng’’ data generation mechanism. Precisely, the data generation
echanism is matching when data {Yt} are generated according

o relation

t = Ŷt (θ∗) + Nt (8)

or some value θ∗ of the parameter θ and the noise {Nt} is indep-
ndent, symmetric about zero.
In the matching case, the standard SPS is guaranteed to deliver
confidence region in Rd̂ that contains the true parameter θ∗

ith user-chosen probability. Moreover, under mild assumptions,
he SPS region shrinks around θ∗, see Section 2 and the references
herein.

In this paper we also consider the situation of a ‘‘non-matc-
ing’’ data generation mechanism: we say that the data genera-
ion mechanism is non-matching if, contrary to what is postulated
y the user, there is no θ∗ such that (8) is valid for an independent
nd symmetric {Nt}.4
For the sake of generality, we avoid to assume any specific

tructure for the non-matching data generation mechanism. Our
nalysis will just assume the existence of limn→∞

1
n

∑n
t=1 ϕtYt

and require mild restrictions on the growth rate of {Yt}. In the
specific case where the data generation mechanism is linear
(e.g., FIR system of order d > d̂, ARX and ARMAX systems), our
general assumptions are easily seen to be implied by standard
sets of conditions.

3.2. The effect of undermodelling on standard SPS

In the case of a non-matching data generation mechanism
one could hope that the SPS region behaves so as to ‘‘warn’’
the user that the algorithm is being applied outside its domain
of applicability. Unfortunately, this is not the case. The SPS re-
gion is constructed so as to be nonempty and to include the
LSE θ̂n (see [12]); in addition, Theorem 2 shows that, under
mild assumptions, the SPS region shrinks around θ̂∞, defined as
limn→∞ θ̂n, as n increases. This behaviour can easily convey to the
user the wrong idea that the estimate becomes more and more
precise as more data are collected, which can have deleterious
effects if, for example, the SPS region is employed to tune a robust
controller against plant parametric uncertainty.

Let Bε(θ̂∞) denote the Euclidean norm-ball centred at θ̂∞ with
radius ε > 0, i.e., Bε(θ̂∞) = {θ : ∥θ̂∞ − θ∥ ≤ ε}. Theorem 2

3 The reader can easily check that the theoretical results and ideas of this
aper do not depend on this specific FIR structure, and can be immediately
pplied to more general set-ups. A particularly useful generalization is to
onsider {L1(z)Ut }, . . . , {Ld̂(z)Ut } in place of {Ut }, . . . , {Ut−d̂} where {Lk(z)Ut } is

{Ut } filtered through the transfer function Lk(z). A celebrated choice of the
transfer functions Lk(z) is the Laguerre polynomials, [2,33–36]. Clearly, the FIR
case is recovered when Lk(z) = z−k .
4 Clearly, undermodelling is a particular case of non-matching.
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(realization-dependent) value n̄ is a probability 1 event.

Theorem 2 (Asymptotic Behaviour of SPS). Let Rn =
1
n

∑n
t=1 ϕtϕ

T
t ,

and assume that there exists a finite limit matrix R̄ ≻ 0 such that

lim
n→∞

Rn = R̄. (9)

Assume also that there exists a finite real vector Ȳϕ such that

lim
n→∞

1
n

n∑
t=1

ϕtYt = Ȳϕ w.p.1, (10)

nd, moreover, that
∞

t=1

∥ϕt∥
4

t2
< ∞ (11)

∞

t=1

E[Y 2
t ]

2

t2
< ∞. (12)

Then,

θ̂∞ ≜ lim
n→∞

θ̂n = R̄−1Ȳϕ (w.p.1), (13)

and, for all ε > 0,

Pr

[
∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂n ⊆ Bε(θ̂∞)

}]
= 1, (14)

where Bε(θ̂∞) ≜ {θ ∈ Rd̂
: ∥θ̂∞ − θ∥ ≤ ε}. ∗

Proof. Using (4), (9) and (10) we immediately get

θ̂n = R−1
n

(
1
n

n∑
t=1

ϕtYt

)
→ R̄−1Ȳϕ w.p.1.

From the definition (5) of Si(θ ), for every i = 1, . . . ,m−1, we
get ∥Si(θ )∥ ≤ ∥Rn

−
1
2 1
n

∑n
t=1 αi,tϕtYt∥ + ∥Rn

−
1
2 1
n

∑n
t=1 αi,tϕtϕt

T
∥ ·

∥θ∥. We want to show that for every δ > 0, there exists with
probability 1 an n0 such that for all n > n0 we get ∥Si(θ )∥ ≤

δ + δ∥θ∥ (for all θ ), from which it follows that

∥Si(θ )∥ ≤ δ + δ∥θ − θ̂∞∥ + δ∥θ̂∞∥. (15)

Note that {αi,tϕtϕ
T
t } is a sequence of independent random

matrices (we recall that {ϕt} is a deterministic sequence). Any
element of αi,tϕtϕ

T
t is zero mean, with variance upper bounded by

∥ϕt∥
4. Condition (11) allows us to apply the Kolmogorov’s Strong

Law of Large Numbers (Theorem 6 in the Appendix) element-
wise and conclude that limn→∞

1
n

∑n
t=1 αi,tϕtϕt

T
= 0 w.p.1. By

(9), Rn
−

1
2 → R̄−

1
2 so that, w.p.1, ∥Rn

−
1
2 1
n

∑n
t=1 αi,tϕtϕt

T
∥ < δ for

any n large enough.
A similar reasoning applies to the term including the avera-

ged sum 1
n

∑n
t=1 αi,tϕtYt , but this requires extra attention be-

ause, in general, {αi,tϕtYt} is not a sequence of independent
andom vectors: to prove that this averaged sum converges to
w.p.1 we resort to martingale theory, as follows. Define Mn =
n
t=1

1
t αi,tϕtYt for n = 1, 2, . . .. Each component of the vector Mn

is a random variable with zero mean whose variance is bounded
by σ 2

Mn
=
∑n

t=1
1
t ∥ϕt∥

2 1
t E[Y 2

t ]. Note that σ 2
Mn

can be bounded
uniformly for all n: in fact, by the Cauchy–Schwarz inequality, we
get

σ 2
Mn

≤

√ n∑ ∥ϕt∥4

t2

√ n∑ E[Y 2
t ]2

t2
≤

√ ∞∑ ∥ϕt∥4

t2

√ ∞∑ E[Y 2
t ]2

t2
,

t=1 t=1 t=1 t=1

4

whose finiteness is ensured by (11) and (12). Denoting by Fn
the σ -algebra generated by the random variables Yn, Yn−1, . . . and
αi,n, . . . , αi,1, we have that

E[Mn+1|Fn] = E[Mn + αi,n+1
ϕn+1Yn+1

n + 1
|Fn] = Mn (w.p.1),

i.e., each component of Mn is a martingale adapted to Fn. There-
fore, we can appeal to Doob’s theorem (Theorem 7 in the
Appendix) to conclude that limn→∞ Mn =

∑
∞

t=1
1
t αi,tϕtYℓ <

w.p.1., which, by Kronecker’s Lemma (Theorem 8 in the
Appendix), entails that limn→∞

1
n

∑n
t=1 αi,tϕtYt = 0 w.p.1., and

this concludes the proof that the function ∥Si(θ )∥ can be upper-
bounded according to (15) for all n large enough. Since m is finite
and does not depend on n, bound (15) can be ensured for all
i = 1, . . . ,m − 1.

On the other hand, using (4), ∥S0(θ )∥2 can be rewritten as (θ−

θ̂n)TRn(θ − θ̂n), from which ∥S0(θ )∥ = ∥R
1
2
n (θ − θ̂n)∥ ≥ ∥R

1
2
n (θ −

θ̂∞)∥−∥R
1
2
n (θ̂n − θ̂∞)∥. Note now that (9) implies that there exists

a ϱ > 0 such that, for all n large enough, ∥R
1
2
n (θ − θ̂∞)∥ ≥

∥θ − θ̂∞∥. Moreover, using (13), we also get that for all δ > 0
here exists with probability 1 an n1 such that for all n > n1 we

ave ∥R
1
2
n (θ̂n − θ̂∞)∥ ≤ δ. From these two facts, we conclude that,

w.p.1, for all n large enough,

∥S0(θ )∥ ≥ ϱ∥θ − θ̂∞∥ − δ. (16)

Since the values of ϱ and θ̂∞ are realization-independent, for
every ε > 0, we can a-priori choose δ > 0 such that (ϱ − δ)ε >
2δ + δ∥θ̂∞∥. Then, putting (15) and (16) together, we conclude
that, with probability 1, for all n large enough, the relationships
∥S0(θ )∥ > ∥Si(θ )∥, i = 1, . . . ,m − 1, are valid for all the values
of θ such that ∥θ − θ̂∞∥ > ε: hence, no points outside the ball
Bε(θ̂∞) are included in the SPS region (6), and statement (14) is
proven. □

Remark 1. Strictly speaking, Theorem 2 applies both to the mat-
ching and the non-matching cases. In the case of a non-matching
data generation mechanism, the SPS region deceivingly shrinks
around the parameter vector θ̂∞, which may not be related to the
identification goals. On the other hand, in the case of a matching
data generation mechanism, Theorem 2 recovers under a slightly
different set of conditions a convergence result previously proven
in Theorem 2 of [14].

In summary, the standard SPS algorithm does not provide any
mechanism to help the user recognize that in a given situation
the assumptions for the validity of the method are not satisfied.
This is the motivation for the UD-SPS algorithm that is presented
and studied in detail in the next section.

Remark 2. It is worth noticing that the SPS algorithm delivers
guaranteed regions also when d̂ is overestimated. In fact, if the
data generation mechanism is matching for a certain d̂, then it
is matching also for larger values of d̂ (it is enough to set the
additional parameters to zero and see that (8) remains true). For
this reason, in the presence of uncertainty on the correct model
order, one might want to increase the number of parameters d̂ in
an attempt to increase the flexibility of the adopted model class
and reduce the mismatch between the identified system and the
data generation mechanism. This strategy, however, comes at a
price. As the information that is carried by the data gets diluted
in a higher-dimensional identification procedure, the variance of
the least squares estimate gets larger and the SPS region tends to
include more parameter values for the same confidence level. In
contrast, the capability to detect undermodelling enables one to
safely reduce d̂ to small values, thus making an efficient use of
the available data.
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. UD-SPS: A modified SPS method

We here define the UD-SPS algorithm, and discuss the main
dea behind it. Clarifying the connection between UD-SPS and
he standard SPS makes it easy to prove that UD-SPS inherits the
ost important properties of standard SPS when the system is
orrectly specified (matching case). Then, we show that UD-SPS
an be used to detect undermodelling.

.1. Formal definition of UD-SPS

UD-SPS constructs a region Θ̂UD
n in which a candidate θ is or is

ot included depending on the ranking of the following functions

0(θ ) ≜ R′

n
−

1
2
1
n

n∑
t=1

[
ϕt
ψt

]
(Yt − ϕT

t θ ),

Qi(θ ) ≜ R′

n
−

1
2
1
n

n∑
t=1

αi,t

[
ϕt
ψt

]
(Yt − ϕT

t θ ),

i = 1, . . . ,m − 1 (17)

where ψt is a vector that includes s extra input values, precisely,5

ψt ≜ [Ut−d̂−1, . . . ,Ut−d̂−s ]
T , (18)

and R′
n =

1
n

∑n
t=1

[
ϕt
ψt

] [
ϕT
t ψT

t

]
.

In (18), s is a user-chosen parameter. Clearly, s need not be
qual to the difference between the true order of the system
which is unknown) and d̂, and s is usually chosen to be a small
umber, e.g., 1, 2 or 3, see Remark 3. The invertibility of R′

n is
ssumed here and throughout the remainder of the paper.6
We now provide a formal construction of Θ̂UD

n by resorting to
a pseudocode. The main aim of this pseudocode is to define Θ̂UD

n
in a precise and formal way, while a discussion on the practical
computation needed for the implementation of Θ̂UD

n is postponed
to Session 5. The intuition behind UD-SPS and its connection with
SPS is presented in the next Section 4.2.

The UD-SPS pseudocode is in two parts. The initialization (Ta-
ble 1) sets the main global parameters and generates the random
objects needed for the construction. Moreover, the user provides
the desired confidence probability p and the parameter s. Like in
the initialization of the standard SPS, a random permutation π of
the set {0, . . . ,m − 1} is generated, whose only role is to break
ties when there are two ∥Qi(θ )∥2 functions with the same value
for a given θ . In fact, based on π , one can define the strict total
order Zj >π Zk ⇔ [

(
Zj > Zk

)
or
(
Zj = Zk and π (j) > π (k)

)
], (so

that π breaks the tie Zj = Zk) for the variables Zi = ∥Qi(θ )∥2,
i = 0, . . . ,m − 1. The second part (Table 2) defines the indicator
function UD-SPS-Indicator(θ ) that determines if a particular pa-
rameter vector θ is included in the region Θ̂UD

n . In principle, the
region Θ̂UD

n is obtained by applying to each and every candidate
θ the UD-SPS-Indicator(θ ) algorithm.

The p-level UD-SPS confidence region is as follows

Θ̂UD
n ≜

{
θ ∈ Rd̂

:UD-SPS-Indicator(θ ) = 1
}
. (19)

5 While this choice of ψt is the most natural one in case of the FIR structure
7) the theory developed applies to a general ψt , as it can be verified from the
erivations in this and in the following sections.
6 This assumption simplifies the definition and the study of UD-SPS, and

s analogous to the assumption of the invertibility of Rn for standard SPS.
eneralizations are possible that consider pseudoinverses rather than inverses.
e also remark that the only motivation for having R′

n in (17) is to obtain a
better shape of the UD-SPS region, while other deterministic choices of R′

n or a
downright elimination of the R′

n matrix in the algorithm (i.e., substitution of R′
n

with the identity matrix in (17)) do not invalidate the statements of Theorems 3,
4, 5.
5

Table 1

Pseudocode: SPS-Initialization

1. Given a (rational) confidence probability p ∈ (0, 1),
set integers m > q > 0 such that p = 1 − q/m;

2. Set the integer s that determines the length of
ψt ≜ [Ut−d̂−1, . . . ,Ut−d̂−s ]

T ;
3. Calculate the outer product

R′
n ≜ 1

n

n∑
t=1

[
ϕt

ψt

][
ϕT
t ψT

t

]
,

and let R′
n
1/2 be the principal square root of R′

n

(it holds that R′
n
1/2R′

n
1/2

= R′
n);

4. Generate n · (m − 1) i.i.d. random signs {αi,t } with
Pr{αi,t = 1} = Pr{αi,t = −1} =

1
2 ,

for i ∈ {1, . . . ,m − 1} and t ∈ {1, . . . , n};
5. Generate a random permutation π of the set

{0, . . . ,m − 1}, where each of the m! possible
permutations has the same probability 1/(m!)
to be selected.

Table 2

Pseudocode: UD-SPS-Indicator ( θ )

1. For the given θ , for t ∈ {1, . . . , n}, compute
the prediction errors
εt (θ ) ≜ Yt − ϕT

t θ ;
2. Let

Q0(θ ) ≜ R′
n
−

1
2 1

n

n∑
t=1

[
ϕt

ψt

]
εt (θ ),

Qi(θ ) ≜ R′
n
−

1
2 1

n

n∑
t=1

αi,t

[
ϕt

ψt

]
εt (θ ),

for i ∈ {1, . . . ,m − 1};
3. Order scalars {∥Qi(θ )∥2

} according to >π ;
4. Compute the rank R(θ ) of ∥Q0(θ )∥2 in the ordering

where R(θ ) = 1 if ∥Q0(θ )∥2 is the smallest in the
ordering, R(θ ) = 2 if ∥Q0(θ )∥2 is the second small-
est, and so on;

6. Return 1 if R(θ ) ≤ m − q, otherwise return 0.

4.2. The idea behind UD-SPS

The following Fact 1 is key to understand and prove the main
features of UD-SPS.

Fact 1. The UD-SPS region Θ̂UD
n can be interpreted as the intersec-

tion between a d̂-dimensional space and a full-fledged standard SPS
region, say Θ̂ ′

n, that is associated with the regressor [ϕT
t ψ

T
t ]

T and
hat lives in the domain {θ ′

∈ Rd̂+s
}. Precisely, Θ̂UD

n = {θ ∈ Rd̂
:

θ T 0T
]
T

∈ Θ̂ ′
n}. ∗

In order to see that Fact 1 is true, consider the functions
′

0(θ
′), S ′

1(θ
′), . . ., S ′

m−1(θ
′) of θ ′

∈ Rd̂+s defined as

S ′

0(θ
′) = R′

n
−

1
2
1
n

n∑
t=1

ϕ′

t (Yt − ϕ′

t
T
θ ′),

S ′

i (θ
′) = R′

n
−

1
2
1
n

n∑
t=1

αi,tϕ
′

t (Yt − ϕ′

t
T
θ ′),

i = 1, . . . ,m − 1, (20)



A. Carè, M.C. Campi, B.Cs. Csáji et al. Systems & Control Letters 153 (2021) 104936

w

R

a

ϕ

w

P

S

T
g
R

n

a∑

ϕ

ϕ

√
here

′

n =
1
n

n∑
t=1

ϕ′

tϕ
′

t
T (21)

nd
T
t ′ =

[
ϕT
t ψT

t

]T
= [Ut−1, . . . ,Ut−d̂,Ut−d̂−1,Ut−d̂−s]. (22)

These are the functions based on which a standard SPS region,
hich we denote Θ̂ ′

n, can be built in the augmented space Rd̂+s

for the model Ŷt = ϕT
t ′θ

′. Comparing (20) with (17), it can be
observed that functions (20) take the same values of functions
(17) whenever θ ′ is restricted to Rd̂

× {0}s, i.e.,

S ′

i (θ
′)|θ ′=[θT 0T ]T = Qi(θ ), (23)

from which the statement in Fact 1 follows.

4.3. UD-SPS with correct system specification

Let us first consider the case of a matching data generation
mechanism. We prove that the coverage property of SPS carries
over to UD-SPS.

Theorem 3. For a matching data generation mechanism, it holds
that

Pr{ θ∗
∈ Θ̂UD

n } = 1 −
q
m
. ∗

roof. Let θ ′∗ ≜ [ θ∗T , 0T
]
T . Recalling that Θ̂UD

n = {θ ∈ Rd̂
: [θ T

0T
]
T

∈ Θ̂ ′
n} (see Fact 1) one concludes that θ∗

∈ Θ̂UD
n if and

only if θ ′∗
∈ Θ̂ ′

n. Then, the conclusion of the theorem follows by
observing that θ ′∗

∈ Θ̂ ′
n with probability 1−

q
m by Theorem 1 (see

ection 2). □

In addition, UD-SPS is strongly consistent.

heorem 4 (Strong Consistency of UD-SPS). Assume that the data
enerating system is matching, that there exists a finite limit matrix

¯ ′
≻ 0 such that

lim
→∞

R′

n = R̄′, (24)

nd, moreover, that
∞

t=1

∥ϕ′
t∥

4

t2
< ∞, (25)

∞∑
t=1

E[N2
t ]

2

t2
< ∞. (26)

Then, for all ε > 0,

Pr

[
∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂UD

n ⊆ Bε(θ∗)
}]

= 1,

where Bε(θ∗) ≜ {θ ∈ Rd̂
: ∥θ∗

− θ∥ ≤ ε}. ∗

Proof. The equation of the matching data generation mechani-
sm, Yt = ϕT

t θ
∗

+ Nt , can be re-written as Yt = ϕ′T
t θ

∗′
+ Nt wh-

ere ϕ′
t
T

= [ϕt
T ψt

T
] is the augmented regressor and θ∗′T

= [θ∗T

0T
] is the ‘‘true’’ parameter vector in the augmented (d̂+s)-dime-

nsional space. The LSE in the augmented space is θ̂ ′
n = ( 1n

∑n
t=1

′
tϕ

′
t
T )−1 1

n

∑n
t=1 ϕ

′
t (ϕ′T

t θ
∗′

+Nt ) = θ∗′
+ ( 1n

∑n
t=1 ϕ

′
tϕ

′
t
T )−1 1

n

∑n
t=1

′
tNt . By (24), the matrix ( 1n

∑n
t=1 ϕ

′
tϕ

′
t
T )−1 converges to a positi-

ve definite matrix as n → ∞. Each component of the vector se-
quence {ϕ′N } is independent zero mean with a variance bounded
t t

6

by σ̄ 2
t = ∥ϕ′

t∥
2E[N2

t ], and we have that
∑

∞

t=1
σ̄2
t
t2
<

√∑
∞

t=1
∥ϕ′

t∥
4

t2∑
∞

t=1
(E[N2

t ])2

t2
< ∞ by the Cauchy–Schwarz inequality and

(25), (26). Thus, the Kolmogorov’s Strong Law of Large Numbers
(Theorem 6 in the Appendix) yields that limn→∞(1n

∑n
t=1 ϕ

′
tϕ

′
t
T)−1

1
n

∑n
t=1 ϕ

′
tNt = 0 w.p.1 so that θ̂ ′

∞
≜ limn→∞ θ̂

′
n = θ ′∗. Let B′

ε(θ
∗′)

= {ϑ ′
∈ Rd̂+s

: ∥θ∗′
− ϑ ′

∥ ≤ ε}. Theorem 2 ensures that Θ̂ ′
n ⊆

B′
ε(θ

∗′) for all n large enough, which implies that

{θ ∈ Rd̂
: [θ T 0T

]
T

∈ Θ̂ ′

n} ⊆ {θ ∈ Rd̂
: [θ T 0T

]
T

∈ B′

ε(θ
∗′)}

for n large enough. The claim of the theorem follows by recalling
that Θ̂UD

n = {θ ∈ Rd̂
: [θ T 0T

]
T

∈ Θ̂ ′
n} (Fact 1) and noting that

{θ ∈ Rd̂
: [θ T0T

]
T

∈ B′
ε(θ

∗′)} = Bε(θ∗). □

4.4. UD-SPS in the presence of undermodelling

Consider now the case of a non-matching data generation me-
chanism.

In this case, we know that the LSE will converge to a deceiving
value θ̂∞, and the Θ̂n region shrinks around this point. This
behaviour can be explained by noting that Yt can be expressed
according to equation

Yt = Ŷt (θ̂∞) + Et ,

where Et ≜ Yt − Ŷt (θ̂∞) is a residual that, in the non-matching
case, does not satisfy the assumption of independence and sym-
metry about zero. By design, SPS is myopically bound to the
postulated structure (7) and it has no mechanism to discriminate
between a residual like Et that includes the effect of undermod-
elled dynamics and a residual that is independent of the input
signal (as is in the matching case). UD-SPS, instead, by construct-
ing a region that can be interpreted as a restriction of a virtual
region Θ̂ ′

n living in an augmented parameter space, is capable of
discovering if the residual can be better described by also using
the extra components of ψt , thus revealing undermodelling.

Building on the above reasoning, the following theorem as-
serts that the UD-SPS algorithm issues a ‘‘warning’’ in the non-
matching case by generating, for n large enough, an empty region.

The statement of the theorem, Eq. (29), is formulated using
the same notation as in Theorems 2 and 4, and means that, with
probability 1, there is a (realization-dependent) value of n̄ (which
depends on the information content carried by data) such that the
region Θ̂UD

n is empty for every n ≥ n̄. Hence, unlike SPS, UD-SPS
has a propensity to warn the user when the method is employed
beyond its domain of applicability, and undermodelling manifests
itself through the constructions of empty UD-SPS regions.

In the theorem, condition (28) is a technical detectability
condition, which formalizes the idea that ψt is able to (partly)
describe Et . This condition is mild because full description of Et is
not required and ψt needs only to capture some content that is
present in Et (see the remark after the proof of the theorem for
more explanation).

Theorem 5 (Undermodelling Detection). Assume that the conditions
(24), (25), (10), (12) hold true, and that there exists a finite vector
Ȳψ such that limn→∞

1
n

∑n
t=1 ψtYt = Ȳψ w.p.1. With the definition

Ȳϕ′ ≜

[
Ȳϕ
Ȳψ

]
, (27)

(Ȳϕ is defined in (10)), if

(R̄′)−1Ȳϕ′ /∈ Rd̂
× {0}s, (28)

then

Pr

[
∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂UD

n = ∅
}]

= 1. ∗ (29)
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roof. The conditions of Theorem 2 are satisfied in the augmen-
ed space where ϕt is replaced by ϕ′

t
T

= [ϕT
t ψT

t ]. Then, by
pplying Theorem 2 in the augmented space, we conclude that,
ith probability 1, the SPS region in the augmented space shrinks
round the limit point θ̂ ′

∞
= R̄′−1Ȳϕ′ /∈ Rd̂

×{0}s. Thus, with prob-
bility 1, for n large enough, the region Θ̂ ′

n has empty intersection
ith the d̂-dimensional subspace in which the UD-SPS region is
efined (Fact 1) and the theorem statement follows. □

emark 3 (On the Detectability Condition (28)). Condition (28)
an be intuitively explained as follows. Assume that we want to
xpress the residual Et as a linear combination of the input vari-
bles in the augmented regressor ϕ′

t = [ϕT
t ψ

T
t ]

T , that is, we look
or the ν̂n that minimizes the sum of the squared residuals (Et −
′
t
Tν)2. This gives ν̂n = (R′

n)
−1 1

n

∑n
t=1 ϕ

′
tEt and, since Et = Yt −

ϕt
T θ̂∞ = Yt − ϕ′

t
T
[
θ̂∞
0

]
, we get ν̂n →

(
(R̄′)−1Ȳϕ′ −

[
θ̂∞
0

])
.

The detectability condition requires that at least one of the last s
components of this vector be nonzero, and hence the residual Et
can be better explained by ψt and ϕt than ϕt alone.

5. Computational aspects of UD-SPS and practical usage

The UD-SPS pseudocode of Section 4 allows one to easily verify
whether a certain value of θ is inside or outside the UD-SPS
region. On the other hand, in system identification practice, one
often desires to construct the whole region to which the system
parameter vector has to belong, which may take a long time if
each single point in a grid has to be examined. Moreover, with
UD-SPS, it is important to check whether the region is empty,
which might be a challenging task to be accomplished via a
gridding procedure. In this section, we study the shape of the
UD-SPS region, by describing its ellipsoidal ‘‘building blocks’’,
which will prove useful to construct suitable approximants of the
UD-SPS region.

5.1. Ellipsoids as building blocks

Let Ei = {θ : ∥Qi(θ )∥2 >π ∥Q0(θ )∥2
}, i = 1, . . . ,m − 1. Then,

the region Θ̂UD
n , (19), can be expressed as

Θ̂UD
n =

⋃
I⊆{1,...,m−1},|I|=q

⋂
i∈I

Ei, (30)

where |I|= q means that the cardinality of set I is equal to q.

5.2. Explicit expression for Ei

Preliminarily, we define the useful shorthands

Pn =
1
n

n∑
t=1

ϕtYt , P ′

n =
1
n

n∑
t=1

ϕ′

tYt , P̃ ′

i,n =
1
n

n∑
t=1

αi,tϕ
′

tYt;

Gn =
1
n

n∑
t=1

ϕ′

tϕ
T
t , G̃i,n =

1
n

n∑
t=1

αi,nϕ
′

tϕ
T
t ,

R′

i,n =
1
n

n∑
t=1

αi,tϕ
′

tϕ
′

t
T
,

and recall that Rn =
1
n

∑n
t=1 ϕtϕ

T
t , R

′
n =

1
n

∑n
t=1 ϕ

′
tϕ

′
t
T . Note that,

when θ ′
=

[
θ

0

]
, the following identities are satisfied

θ TGT
n = θ ′TR′

n, θ ′TR′

nθ
′
= θ TRnθ, θ ′TP ′

n = θ TPn; (31)
θ T G̃T

= θ ′T R̃′ . (32)
i,n i,n

7

By definition, ∥Q0(θ )∥2
= (P ′

n − Gnθ )T (R′
n)

−1(P ′
n − Gnθ ) = θ T

(GT
n(R

′
n)

−1Gn)θ − 2θ TGT
n(R

′
n)

−1P ′
n + P ′

n
T (R′

n)
−1P ′

n, which, using the
identities (31), simplifies to

∥Q0(θ )∥2

= θ TRnθ − 2θ TPn + P ′

n
T (R′

n)
−1P ′

n

= θ TA0θ − 2θ Tb0 + c0, (33)

with the obvious definitions of A0, b0 and c0. Similarly,

∥Qi(θ )∥2

= θ T (̃GT
i,n(R

′

n)
−1G̃i,n)θ − 2θ T G̃T

i,n(R
′

n)
−1P̃ ′

i,n + P̃ ′

i,n
T (R′

n)
−1P̃ ′

i,n

= θ TAiθ − 2θ Tbi + ci, (34)

with the obvious definitions of Ai, bi and ci. Except for the case
when A0 − Ai = 0,7 ∥Q0(θ )∥2

− ∥Qi(θ )∥2 is a quadratic function,
as a consequence of the fact, which we prove next, that (A0 −

Ai) ⪰ 0. To show that (A0 − Ai) ⪰ 0, we first notice that (R′
n −

R′

i,n(R
′
n)

−1̃R′

i,n) ⪰ 0 (in fact, Lemma 4 of [12] applies verbatim to

the augmented matrices R′
n and R̃′

i,n). Then, defining θ
′
=

[
θ

0

]
and using (32) we have that θ T (Rn − G̃T

i,n(R
′
n)

−1G̃i,n)θ = θ ′T (R′
n −

R′

i,n(R
′
n)

−1̃R′

i,n)θ
′
≥ 0 for every θ , so that (Rn − G̃T

i,nR
′
n
−1G̃i,n) ⪰ 0.

Clearly, when the A0 − Ai matrix is positive definite (as it is
expected in practical cases), there is a unique minimizer θc of the
quadratic function. However, to deal with the possibility that this
matrix is only positive semi-definite, we write the (possibly non-
unique) minimum point θc of ∥Q0(θ )∥2

−∥Qi(θ )∥2 by resorting to
the Moore–Penrose pseudo-inverse:

θc = (A0 − Ai)†(b0 − bi). (35)

The corresponding minimum value vi ≜ ∥Q0(θc)∥2
−∥Qi(θc)∥2 can

be directly computed by substitution. Thus, the ellipsoid can be
written as8

Ei = {θ : (θ − θc)T (Rn − G̃T
i,n(R

′

n)
−1G̃i,n)(θ − θc) <π −vi}.

This expression of Ei is handy as it allows to recognize quickly
whether the set is empty (vi > 0 implies empty set). Moreover,
it allows one to compute useful quantities, such as the volume of
the ellipsoid,9 tight axes-aligned bounding boxes,10 etc.

According to (30), when q = 1, the UD-SPS region Θ̂UD
n is a

simple union of sets Ei. Therefore, in the q = 1 case, the analysis
above can be directly exploited for a satisfactory computation
and evaluation of Θ̂UD

n . Choosing q > 1 yields a more complex
construction that, however, could be beneficial in some respects
(e.g., optimality results proven in [20] assume that both q and
m increase when n → ∞). For this latter case, we derive in
what follows a handy ellipsoidal outer approximation of Θ̂UD

n that
builds on the results of this section. It is worth mentioning that

7 When A0 − Ai = 0, the function ∥Q0(θ )∥2
− ∥Qi(θ )∥2 degenerates into a

imple affine (or constant) function. This eventuality, which is very rare under
easonable input excitation conditions, can be easily detected and dealt with,
nd is not discussed further here.
8 In practice, <π can be replaced by the handier ≤ at the price of possibly

ncluding some points that had been excluded by the tie-break rule π . Moreover,
the reader will have noticed that, in the case where the matrix A0 − Ai
is only semidefinite, Ei extends indefinitely in the directions of eigenvectors
corresponding to null eigenvalues.

9 The volume can be obtained by the formula Vd̂

√
det−1

(
Rn−G̃Ti,n(R

′
n)−1 G̃i,n

−vi

)
,

where Vd̂ is the volume of the hypersphere of unit radius in Rd̂ .
10 The vector whose components are the lower bounds can be computed as

θc −

√
vidiag[(̃GT

i,n(R′
n)−1G̃i,n − Rn)−1], where

√
· is component-wise, while the

vector with the upper bounds is θ +

√
v diag[(̃GT (R′ )−1G̃ − R )−1].
c i i,n n i,n n
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ther methods that have been explored for the approximation
f SPS regions could be applied mutatis mutandis to UD-SPS;

in particular, the reader is referred to [37] for interval analysis
methods and to [38] for sampling schemes.

5.3. Ellipsoidal outer approximation for Θ̂UD
n

To begin with, note that whenever Ei is nonempty we have

Ei ⊆{θ ∈ Rd̂
: ∥Q0(θ )∥2

≤ ∥Qi(θ )∥2
}

⊆{θ : ∥Q0(θ )∥2
≤ sup

θ̄ :∥Q0(θ̄ )∥2≤∥Qi(θ̄ )∥2
∥Qi(θ̄ )∥2

}

={θ : ∥Q0(θ )∥2
≤ sup

θ̄ :∥Q0(θ̄ )∥2≤∥Qi(θ̄ )∥2
∥Q0(θ̄ )∥2

}.

Using (33) and (34), the value supθ̄ :∥Q0(θ̄ )∥2≤∥Qi(θ̄ )∥2 ∥Q0(θ̄ )∥2 can be
written as the solution to the optimization problem

minimize
θ∈Rd̂ −θ TA0θ + 2θ Tb0 − c0

subject to θ T (A0 − Ai)θ − 2θ T (b0 − bi) + c0 − ci ≤ 0. (36)

The optimal value of this non-convex program can be obtained
by solving the following convex semidefinite program (SDP), see
Appendix B in [39].

maximizeγ ,λ γ

subject to λ ≥ 0[
λ(A0 − Ai) − A0 λ(bi − b0) + b0

(λ(bi − b0) + b0)T λ(c0 − ci) − γ − c0

]
⪰ 0. (37)

enoting by γ ∗

i the optimal value, and repeating the procedure
or all i = 1, . . . ,m − 1 for which Ei is non-empty (set γi = −∞

therwise), we define γ (q)
∗ as the qth largest of γi, i = 1, . . . ,m−1.

Then we have that any point θ that is contained in at least q of
he sets Ei cannot be outside the ellipsoid˜UD
n = { θ ∈ Rd̂

: ∥Q0(θ )∥2
≤ γ (q)

∗
}, (38)

nd therefore Θ̃UD
n certainly contains Θ̂UD

n by (30).

. A numerical experiment

The true data generation mechanism is the following FIR(2)
ystem

t = 0.75Ut−1 − 0.3Ut−2 + Nt , (39)

here {Nt} is a sequence of i.i.d. Laplacian random variables with
ero mean and variance 0.1. The input signal is generated as

t = −0.5Ut−1 + Vt ,

here {Vt} is a sequence of i.i.d. Gaussian random variables with
ero mean and variance 1, independent of Nt .
The simple identification problem that we provide here to

llustrate some basic facts of UD-SPS is described as follows: the
equence Y1, . . . , Yn, n = 50, is available, together with the
easured input U1, . . . ,U50, and we want to build a confidence

egion for the model parameters at probabilistic level 80%. In
hat follows, we will compare the output of SPS and UD-SPS on
epeated experiments. In all simulations, m and q are set to 10
nd 2 respectively, with the aim of achieving an 80% confidence
evel.

First, we simulated on 10,000 independent experiments the
ehaviour of a user who has postulated a FIR(1) model and uses
PS and UD-SPS to estimate the unknown parameter. The SPS
egion was obviously always nonempty as it had to contain the
S estimate. On the other hand, UD-SPS with s = 1 detected
ndermodelling by yielding an empty region in all but 14 cases
 f

8

ut of 10,000. Moreover, the number of cases where the region
as not empty went down to zero as the number of data points
as increased to n = 70 data points. This demonstrates the
ffectiveness of the new UD-SPS in detecting undermodelling
hen it occurs.
Then, again with n = 50, we applied SPS and UD-SPS under

he correct system specification, i.e., FIR(2). UD-SPS was applied
ith s = 1 (therefore, ϕt = [Ut−1,Ut−2]

T and ψt = [Ut−3]).
he UD-SPS region included the true parameters b∗

1 = 0.75,
∗

2 = −0.3 in 8,012 cases out of 10,000, and SPS in 8,057 out of
0,000 cases. These results are in agreement with the theoretical
uarantee that the constructed region is an 80% coverage region.
he region Θ̂UD

n at level 80% obtained in one of these 10,000
xperiments is represented by the shaded area in Fig. 1, on the
eft. The dashed lines are the contours of the 9 ellipsoidal sets Ei,
= 1, . . . ,m − 1, which are the building blocks to construct all
he regions at probability levels (1−

j
9 ), j = 1, . . . , 9: for example,

the region of interest, at level 80%, is the region containing the
points at the intersection of at least two sets Ei; if instead one
wants to visualize the region at level 90%, this is the union of
all the Ei’s, while the region at level 10% (the smallest UD-SPS
egion, and with the less confidence, that can be constructed for
he present choice of the parameter m) is the small region at the
ntersection of all the Ei’s. The ellipsoidal outer approximation ofˆUD
n (constructed using the procedure in Section 5) is represented

n the figure as a solid-line ellipse in red. Fig. 1, on the right,
hows together the contour of the UD-SPS region (lighter line)
nd the contour of the SPS region (darker line) constructed from
he same set of data. Note that the SPS region does not intersect
he horizontal axis (b2 = 0): in view of Fact 1, this means that,
n this case, UD-SPS would correctly detect undermodelling when
pplied with d̂ = 1 and s = 1.

. Conclusions and future work

In this paper we have extended the study of SPS, a statistical,
uaranteed, finite sample system identification method, to the
ase of undermodelled dynamics. While undermodelled dynamics
s not covered by the standard SPS algorithm, we have also shown
hat the SPS algorithm does not contain any mechanism to warn
he user that the algorithm is working outside of its domain of
pplicability.
We have then proposed an extension of SPS, called UD-SPS,

hich is able to detect that the algorithm is working outside of
ts domain of applicability as soon as a sufficient amount of data is
ollected. We have shown that UD-SPS provides guaranteed con-
idence regions if the model order is correctly specified, otherwise
t almost surely detects undermodelling in the long run.

The findings presented in this paper should not be seen as
etting a final word, rather the authors conceive this work as a
tepping stone towards future investigations. Driven by the ob-
ervation that the standard SPS algorithm has no internal mech-
nisms to invalidate an unsuitable model class, our effort has
een geared towards manufacturing a new scheme that warns
he user in case an inappropriate model class is being used, while
lso preserving the original ability to provide guaranteed regions
hen the model class is correct. The next step we envisage is
o exploit these new ideas as a means for complexity control in
daptive model selection schemes with probabilistic guarantees:
s soon as data are informative enough for UD-SPS to detect that
model class is inadequate, the model class is replaced with a
ore suitable one. Setting up this iterative procedure is at the
resent time still an open research plan. One fundamental aspect
hat needs to be better characterized is whether a model class
hat has yet not been invalidated by UD-SPS remains appropriate
or the intended use of the model. This is fundamental to allow
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t

n

T
E

b

T
i
a

Fig. 1. Left — the shaded area is the UD-SPS region at level 80%, Θ̂UD
n , with n = 50 data, in the (b1, b2) space. The star ∗ denotes the true parameter value; the

cross × is the LSE. The dashed ellipses are the contours of the sets Ei . The solid red ellipsoid is the ellipsoidal outer approximation of Θ̂UD
n . Right — the contour

of Θ̂UD
n (lighter line) is compared with the contour of the SPS region (darker line) for the same set of data. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
for a seamless transition from one model class to the next while
getting the system to suffer moderate distress. We hope that the
present paper will offer a solid platform to foster activities in
these important directions.
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Appendix. Useful results

Theorem 6 (Kolmogorov’s Strong Law of Large Numbers, [40]). Let
ξ1, ξ2, . . . be a sequence of independent random variables with finite
second moments, and let Sn =

∑n
t=1 ξt . Assume that

∞∑
t=1

E[(ξt − E[ξt ])2]
t2

< ∞,

hen

lim
→∞

Sn − E[Sn]
n

= 0 w.p.1.

heorem 7 (Doob, [40]). Let (ξn,Fn) be a submartingale (i.e.,
[ξn+1|Fn] ≥ ξn w.p.1), with supn E[|ξn|] < ∞. Then with pro-
ability 1, the limit limn→∞ ξn = ξ∞ exists and E[|ξ∞|] < ∞.

heorem 8 (Kronecker’s Lemma, [40]). Let {bt} a sequence of pos-
tive increasing numbers such that limt→∞ bt = ∞, and let xt be
sequence of numbers such that

∑
∞

t=1 xt converges. Then, limn→∞
1
bn

∑n
t=1 btxt = 0. In particular, if bt = t, xt =

yt
t and

∑
∞

t=1
yt
t con-

verges, then limn→∞
1
n

∑n
t=1 yt = 0.
9
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