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Confidence regions (and hypothesis testing)
for parameters of GARCH processes

ScoPe: works by permuting the residuals in
the score (gradient of the log-likelihood)

Centered around the Quasi-Maximum
Likelihood Estimate (QMLE)
Distribution-free (w.r.t. the driving noise;
even if it is heavy-tailed and skewed)

Non-asymptotic (finite sample) guarantees

Exact (user-chosen) coverage probabilities
Applicable to nonstationary models, as well

Confirmation on major stock market indices

Introduction

In many applications it is typical that larger dis-
turbances are more likely followed by larger distur-
bances, while smaller fluctuations tend to be fol-
lowed by smaller fluctuations. This phenomenon

can be modeled by GARCH processes. Here, we
extend the SPS method |1] to GARCH models.

GARCH Models

Formally, a GARCH(p, q) process, { X;}, is defined
by the following two equations |2)]
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where {e;} is a strong white noise, i.e., an i.i.d.

sequence of real random variables with zero mean
and unit variance; variable o7 defines the condi-

tional variance of X;, given its own past up to t —1;
and w* > 0 as well as o7, b7 > 0 are constants.

Quasi-Maximum Likelihood

GARCH models are typically estimated by Quasi-
Maximum Likelihood (QML) methods. They use

a (Gaussian “working hypothesis”, but are guaran-

teed to work under mild statistical assumptions.
The conditional Gaussian quasi-likelihood is
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where © = (X1, ..., X,,) is the sample and
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where 6 € RPTIT! ig a generic vector encoding the
parameters, 0 = (w, a1, ..., qp, f1,...,3,), while
the “true” parameter vector is denoted by 6~.
The QMLE is any measurable solution of

A, = argmax L, (0; x).
0eco

Which is equivalent to minimizing (namely, take a
natural logarithm and drop constants)
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where 1/n is included for numerical stability.
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Asymptotics of QMLE

Under mild regularity conditions (nondeg. noise &
identifiability), the QMLE is strongly consistent

. =5 0* as n — 0.

[t can also be proved, assuming E[ej] < oo, that
the QMLE is asymptotically normal

V0, — 6°) -5 N(0,T) as n — oo,

for a covariance matrix I' depending on Vy 57(0*).

This can be used to define (asymptotic) confidence
ellipsoids. Assume I, is an estimate of I, then
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where d 2 p+ g+ 1 and the probability that 8* €
O, is approximately F\24(s), which is the CDI of
the v? distribution with d degrees of freedom.

(zaussian Score

The QMLE satisfies the likelithood equation
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and the gradient of the (conditional) log-likelihood
function, the score tunction, can be written as
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where &,(0) = X,/6,(0) is a reconstructed residual
for time ¢ assuming parameter 6, and 5+(f) is an

estimate of o4, which can be calculated recursively:.

Score Permutation

Note that &(0%) = &, for all ¢, assuming

(P1) The “true” system is in the model class.

(P2) The initial conditions are known.

Since {e;} is i.i.d., their joint distribution is main-
tained under arbitrary index permutation 7 (-),

{ei} £ {ene)

Given a 6, the main idea is first to “invert” the
system to get {€;(A)} and then generate alternative
trajectories by randomly permutated residuals,

é\m(l)(e)a s 7é\ﬂz(n)(e)7

forall7 € {1,...,m—1}, where m is user-chosen.
Let 7y be the identity permutation, i.e., my(t) = t.
The original and the perturbed score functions are
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where the perturbed variances (6, m;) are
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which gives rise to an alternative trajectory
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The rank of ||B(6, m)||* within {||B(0, m;)||*} is
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where I[(+) is an indicator function and > is > with
random tie-breaking. The ScoPe confidence set is

O,(m,r) 2 {00 : R, (0)<m—r)},

where m > r > 0 are user-chosen integers.

Assuming (P1) and (P2), we have that
- r

P(6* € O,(m,r)) = 1——.
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Experimental Results

The experiments focused on GARCH(1,1) models
X =

— Ot &y,
BN
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using both simulated and real-world datasets.

ScoPe was compared with asymptotic ellipsoids,
residual- and likelihood ratio bootstrap methods.

The daily closing prices of Nasdaq 100, S&P 500
and F'TSE 100 were used from the entire period
of 2014. Models were fitted to the compound re-
turns, i.e., for each price sequence { P}, the data

were transformed by R; = log(FP;/Pi—1).

Table 1: Relative Areas on Stock Market Indices (2014)

Method  Nasdaq 100 S&P 500 FTSE 100
Asym.Ell. 0.3426 0.1679 0.1535
Res.Boots. 0.3791 0.2549 0.2850
LR.Boots. 0.8150 0.7919 0.8326
ScoPe 0.3801 0.2862 0.2412
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Figure 1. Logistic noise, n = 100, m = 100, » = 10; Exact
90% ScoPe confidence set for a stationary GARCH(1, 1).
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