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Approach for Constructing Exact Non-Asymptotic
Confidence Regions in Linear Regression Models
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Abstract—We propose a new system identification method,
called Sign - Perturbed Sums (SPS), for constructing non-
asymptotic confidence regions under mild statistical assumptions.
SPS is introduced for linear regression models, including but not
limited to FIR systems, and we show that the SPS confidence
regions have exact confidence probabilities, i.e., they contain the
true parameter with a user-chosen exact probability for any
finite data set. Moreover, we also prove that the SPS regions
are star convex with the Least-Squares (LS) estimate as a star
center. The main assumptions of SPS are that the noise terms
are independent and symmetrically distributed about zero, but
they can be nonstationary, and their distributions need not
be known. The paper also proposes a computationally efficient
ellipsoidal outer approximation algorithm for SPS. Finally, SPS
is demonstrated through a number of simulation experiments.

Index Terms—system identication, finite sample properties,
parameter estimation, linear regression models, least squares
methods, statistics.

I. INTRODUCTION

Estimating parameters of partially unknown systems based
on noisy observations is a classical problem in signal pro-
cessing, system identification, machine learning and statistics.
There are several standard methods available, which typically
provide point estimates. Given an estimate, it is an intrinsic
task to evaluate how close the estimated parameter is to the
true one and such evaluation often comes in the form of confi-
dence regions. Confidence regions are especially important for
problems involving strict safety, stability or quality guarantees,
and serve as a basis for ensuring robustness.

In practice, we only have a finite number of measure-
ments and limited statistical knowledge about the noise, and
this strongly restricts the number of methods available for
constructing confidence regions, unless we are satisfied with
approximate, heuristic solutions. Here, we propose a new sta-
tistical parameter estimation approach, called Sign-Perturbed
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Sums (SPS), for constructing finite-sample, quasi distribution-
free confidence regions. This paper introduces and analyzes
the SPS method for linear regression models including Finite
Impulse Response (FIR) and Generalised FIR models.

Linear regression is a classical problem in statistics, which
finds applications in many fields. It is a core component of
identification, learning and prediction tasks, and a typical ap-
plication is to estimate parameters of dynamical systems from
experimental data, which is one of the fundamental problems
of system identification [1], [2], [3], [4], [5]. Under natural
conditions the Least-Squares (LS) method provides a strongly
consistent point estimate of the system parameters. Moreover,
the parameter estimation error is asymptotically normal, and
this property can be used to build approximate confidence
regions. However, these regions are based on the Central Limit
Theorem, and hence are guaranteed only asymptotically as the
number of data points tends to infinity. Therefore, applying
the classical system identification theory with finitely many
data points results only in heuristic confidence regions, which
do not come with strict theoretical guarantees. This calls for
alternative approaches that allow us to construct guaranteed,
non-asymptotic confidence regions around the Least-Squares
Estimate (LSE) under mild statistical assumptions.

The system identification method “Leave-out Sign-dominant
Correlation Regions” (LSCR) was developed earlier [6], [7],
[8], [9] by authors of this paper. This method can build
guaranteed, non-asymptotic confidence regions for parameters
of various (linear and non-linear) dynamical systems under
weak assumptions on the noise. LSCR has been applied
successfully in various contexts [10], [11], and the topic has
been the object of various investigations and related studies
[12], [13], [14], [15], [16], [17]. However, LSCR provides
confidence regions with exact probabilities only for scalar
parameters, while it offers bounds for the multidimensional
case. Furthermore, the inclusion of the LSE in the confidence
regions constructed by LSCR is not guaranteed.

The non-asymptotic SPS method, which is presented in this
paper, provides exact confidence regions for multidimensional
parameter vectors and guarantees the inclusion of the LSE
in the confidence set. The exact finite-sample confidence
probability is guaranteed even though the knowledge of the
particular probability distributions of the noise is not assumed.
The main assumptions on the noise terms are that they are
independent and have symmetric distributions about zero,
however, their distributions can change in each time-step. Re-
garding regressors, this paper concentrates on the deterministic
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case, while it is easy to generalize the results to the case where
the regressors are random but independent of the noise.

The main contributions of the paper are as follows:

1) The SPS method for building confidence regions for
linear regression problems is introduced.

2) The following finite-sample (non-asymptotic) results are
proved for SPS under mild statistical assumptions:
• The probability that the SPS region contains the true

parameter is exact for any user-chosen probability.
• The SPS confidence regions are star convex with the

least-squares estimate as a star center.

3) The paper also discusses the practical implementation of
SPS and introduces an ellipsoidal outer approximation
algorithm which can be efficiently computed.

4) Finally, several experiments are presented that illustrate
the SPS method, and compare it with alternatives such as
the confidence ellipsoids based on the asymptotic system
identification theory.

The structure of the paper is as follows. In Section II the linear
regression problem is presented together with the assumptions.
Section III gives a short overview of the LS method and its
asymptotic theory. Section IV introduces the SPS method,
while Section V presents its theoretical properties. In Section
VI the ellipsoidal outer approximation algorithm is described
followed by several numerical experiments in Section VII.
Finally, Section VIII summarizes and concludes the paper.
Preliminary versions of the results in this paper can be found in
previous conference papers [18], [19], [20], which also contain
additional numerical experiments.

II. PROBLEM SETTING

This section presents the linear regression problem and
introduces our main assumptions and objectives.

A. Data Generation

Consider the following scalar linear regression system

Yt , φT
t θ

∗ +Nt, (1)

where Yt is the output, Nt is the noise, φt is the regressor,
and t is the discrete time index. Parameter θ∗ is the true
parameter to be estimated. The random variables Yt and Nt are
real-valued, while φt and θ∗ are d dimensional real vectors.
We consider a finite sample of size n which consists of the
regressors φ1, . . . , φn and the outputs Y1, . . . , Yn.

For simplicity, we will consider deterministic regressors,
{φt}, in this paper. Note, however, that our results can be
easily generalized to the case of random, but exogenous,
regressors, namely, to the case when the noise sequence {Nt}
is independent of the regressor sequence {φt}. In that case, our
assumptions on the regressors (stated below) must be satisfied
almost surely and then the analysis can be traced back to the
presented theory by fixing a realization of the regressors (i.e.,
by conditioning on the σ-algebra generated by the regressors)
and applying the presented results realization-wise.

B. Examples

There are many examples in signal processing and control
of systems taking the form of (1) [1], [4]. The most common
example is the widely used FIR model

Yt = b∗1Ut−1 + b∗2Ut−2 + · · ·+ b∗dUt−d +Nt,

where φt = [Ut−1, . . . , Ut−d]
T consists of past inputs and

θ∗ = [b∗1, . . . , b
∗
d]

T.
More generally, orthogonal functions (w.r.t. the Hardy space

H2) are often used for modeling systems with slowly decaying
impulse responses. Their transfer functions can be written as

G(z, θ∗) =
d∑

k=1

θ∗k Lk(z, α),

where z is the shift operator and {Lk(z, α)} is a function ex-
pansion with a (fixed) user-chosen parameter α. The regressor
in this case is φt = [L1(z, α)ut, . . . , Ld(z, α)ut ]

T.
Using Lk(z, α) = z−k corresponds to the standard FIR

model while, e.g., a Laguerre model is obtained by using the
Laguerre polynomials [1], [21], [22],

Lk(z, α) =
1

z − α

(
1− αz

z − α

)k−1

.

C. Basic Assumptions

Our assumptions on the regressors and the noise are:

A1 (independence, symmetricity): {Nt} is a sequence of
independent random variables. Each Nt has a symmetric
probability distribution about zero.

A2 (outer product invertibility): det(Rn) ̸= 0, where

Rn , 1

n

n∑
t=1

φtφ
T
t .

The strongest assumption on the noise is that it forms an
independent sequence (see Section V-C for comments on how
this assumption can be relaxed). Apart from independence, the
noise assumptions are rather weak, and the noise terms can be
nonstationary with unknown distributions, and there are no
moment or density requirements either. The other significant
assumption is that the noise must be symmetric. Many standard
distributions satisfy this property.

D. Objectives

Our goal is to construct confidence regions for the parameter
θ∗ that have guaranteed user-chosen confidence probabilities
for finite, and possibly small, number of data points. The
constructed regions are quasi distribution-free, as the only
assumption on the noise distribution is A1. This is important
since in practice the knowledge about the noise distribution
is limited. Additionally, the confidence regions should contain
the least-squares point estimate.

We will see that the SPS method proposed in this paper
provides finite-sample confidence regions that have an exact
user-chosen probability to contain θ∗. Despite the generality of
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our assumptions, the confidence regions are well-shaped and,
in standard cases, they are similar in size to the regions that
would be constructed with the full knowledge of the statistical
characteristics of the noise.

III. LEAST SQUARES AND ITS ASYMPTOTIC THEORY

Before we present the SPS approach, we briefly recall the
LS method and its associated asymptotic theory as they are
used in later sections.

A. Least-Squares Estimate (LSE)

To find the LSE, we introduce the predictors

Ŷt(θ) , φT
t θ.

The prediction errors for a given θ are

εt(θ) , Yt − Ŷt(θ) = Yt − φT
t θ,

and the LSE is found by minimizing the sum of the squared
prediction errors, that is,

θ̂n , argmin
θ∈Rd

n∑
t=1

ε2t (θ) = argmin
θ∈Rd

n∑
t=1

(Yt − φT
t θ)

2.

The solution can be found by solving the normal equation,
n∑

t=1

φt εt(θ) =
n∑

t=1

φt(Yt − φT
t θ) = 0, (2)

which has the analytic solution (assuming A2)

θ̂n =

( n∑
t=1

φtφ
T
t

)−1( n∑
t=1

φtYt

)
.

B. Asymptotic Confidence Regions

For zero mean independent and identically distributed (i.i.d.)
noise, the LS estimation error is asymptotically Gaussian under
mild conditions. More precisely,

√
n (θ̂n − θ∗) converges in

distribution to the Gaussian distribution with zero mean and
covariance Γ , σ2R−1, where σ2 is the variance of the noise,
and R is the limit of Rn = 1

n

∑n
t=1 φtφ

T
t as n→ ∞ assuming

this limit exists and is positive definite. As a consequence,
n
σ2 (θ̂n − θ)TR (θ̂n − θ) converges in distribution to the χ2

distribution with dim(θ∗) = d degrees of freedom [1].
Replacing R with Rn and σ2 with the estimate

σ̂2
n , 1

n− d

n∑
t=1

ε2t (θ̂n), (3)

an approximate confidence region can be built as

Θ̃n ,
{
θ ∈ Rd : (θ − θ̂n)

TRn (θ − θ̂n) ≤ µσ̂2
n

n

}
, (4)

where the probability that θ∗ is in the confidence region Θ̃n

is approximately Fχ2(d)(µ), where Fχ2(d) is the cumulative
distribution function of the χ2 distribution with d degrees
of freedom. However, this confidence region based on the
asymptotic system identification theory does not come with
rigorous theoretical guarantees for the finite sample case, and
therefore should only be used as a heuristic.

IV. THE SIGN-PERTURBED SUMS (SPS) METHOD

In this section, we first motivate, and then formally intro-
duce, the Sign-Perturbed Sums (SPS) method for constructing
confidence regions with guaranteed finite sample properties.

A. Intuitive Idea

The LS estimate is obtained as the solution to the normal
equation (2). This equation can be re-written as

n∑
t=1

φtφ
T
t θ̃ +

n∑
t=1

φtNt = 0,

where θ̃ , θ∗ − θ. It is clear that the uncertainty in the
LSE comes from the noise {Nt}, and, if each Nt were zero,
then θ̂n = θ∗. In order to construct a confidence region, we
should somehow evaluate the uncertainty of the estimate. One
way of doing this would be to assume a particular probability
distribution of the noise and propagate this distribution through
the above formula to get a distribution of the estimation error.
Then, the distribution of the estimation error can be used to
construct the confidence region. However, we want to avoid
such an approach as it needs strong prior assumptions on the
noise, which makes it unattractive for practical purposes.

We follow another approach and try to exploit the in-
formation in the data as much as possible while assuming
minimal prior statistical knowledge about the noise. Our core
assumption is the symmetry of the noise. We introduce m− 1
sign-perturbed sums

Hi(θ) =

n∑
t=1

φtαi,t(Yt − φT
t θ)

=
n∑

t=1

αi,tφtφ
T
t θ̃ +

n∑
t=1

αi,tφtNt,

i = 1, . . . ,m − 1, where {αi,t} are random signs, i.e. i.i.d.
random variables that take on the values ±1 with probability
1/2 each. That is, we perturb the sign of the prediction errors
in the normal equation. For a given θ, we can also calculate
the value for the case when no sign-perturbations are used,
which we call the reference sum,

H0(θ) =
n∑

t=1

φt(Yt − φT
t θ) =

n∑
t=1

φtφ
T
t θ̃ +

n∑
t=1

φtNt.

A comparison of the H0(θ) and Hi(θ) functions can be done
by using a norm ∥ · ∥. In the sequel, if not otherwise stated,
∥ · ∥ will refer to the 2-norm, i.e. ∥x∥2 = xTx.

For θ = θ∗, these sums can be simplified to

H0(θ
∗) =

n∑
t=1

φtNt,

Hi(θ
∗) =

n∑
t=1

αi,tφtNt =
n∑

t=1

±φtNt,

where in the last equation we have written ± instead of
αi,t for intuitive understanding. H0(θ

∗) and Hi(θ
∗) have the

same distribution since {Nt} are independent and symmetric.
Therefore, there is no reason why a particular ∥Hj(θ

∗)∥2
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should be bigger or smaller than another ∥Hi(θ
∗)∥2 and the

probability that a particular ∥Hj(θ
∗)∥2 is the k th largest one

in the ordering of {∥Hi(θ
∗)∥2}m−1

i=0 will be the same for all
j, including j = 0 (the case of the reference sum, i.e., where
there are no sign-perturbations). As j can take on m different
values, this probability is exactly 1/m.

However, for “large enough” ∥θ̃∥, we will have that∥∥∥∥ n∑
t=1

φtφ
T
t θ̃+

n∑
t=1

φtNt

∥∥∥∥2 > ∥∥∥∥ n∑
t=1

±φtφ
T
t θ̃+

n∑
t=1

±φtNt

∥∥∥∥2,
with “high probability”. In fact,

∑n
t=1 φtφ

T
t θ̃ on the left-hand

side increases faster than
∑n

t=1 ±φtφ
T
t θ̃ on the right-hand

side. Hence, for ∥θ̃∥ large enough, ∥H0(θ)∥2 dominates in
the ordering of {∥Hi(θ)∥2}.

From these intuitions, the general idea is to construct the
confidence region based on the rankings of the functions
{∥Hi(θ)∥2} and leave out those θ parameters for which
∥H0(θ)∥2 “dominates” the other functions.

In the formal construction of the SPS method, functions
{Hi(θ)} will be modified with a term, R−1/2

n , that helps to
shape the region and an 1/n factor to increase the numerical
stability, that is, we will use Si(θ) = R

−1/2
n

1
nHi(θ) instead of

Hi(θ), cf. the pseudocode in Table II. However, this does not
affect the core idea of the construction. Next, we provide the
formal construction of SPS, followed by results stating some
finite-sample properties of the obtained confidence sets.

B. Confidence Region Construction

The SPS method is in two parts. The first part, which we
call initialization, sets the main global parameters of SPS
and generates the random objects needed for the construction.
In the initialization, the user provides the desired confidence
probability p. The second part evaluates an indicator function,
which can be called for a particular parameter value θ to decide
whether it is included in the confidence region.

The pseudocode for the initialization is given in Table I.
The permutation π in point 4 is only used in the indicator

function to break ties, and decide which function ||Si(θ)||2 or
||Sj(θ)||2 is the “larger” if ||Si(θ)||2 and ||Sj(θ)||2 take on
the same value. More precisely, given m real numbers {Zi},
i = 0, . . . ,m− 1, we define a strict total order ≻π by

Zk ≻π Zj if and only if

(Zk > Zj ) or (Zk = Zj and π(k) > π(j) ) .

Note that π is a bijection (one-to-one correspondence) from
{0, . . . ,m − 1} to itself, thus, for k ̸= j, π(k) and π(j) are
two different integers in {0, . . . ,m− 1}.

After SPS is initialized, the indicator function given in
Table II can be called to decide whether a particular parameter
value θ is included in the confidence region.

Using this construction, we can define the p-level SPS
confidence region as follows

Θ̂n ,
{
θ ∈ Rd : SPS-INDICATOR( θ ) = 1

}
.

PSEUDOCODE: SPS-INITIALIZATION

1. Given a (rational) confidence probability p ∈ (0, 1),

set integers m > q > 0 such that p = 1− q/m;

2. Calculate the outer product

Rn , 1
n

n∑
t=1

φtφ
T
t ,

and find a factor R1/2
n such that

R
1/2
n R

1/2T
n = Rn;

3. Generate n (m− 1) i.i.d. random signs {αi,t} with

P(αi,t = 1) = P(αi,t = −1) = 1
2 ,

for i ∈ {1, . . . ,m− 1} and t ∈ {1, . . . , n};

4. Generate a random permutation π of the set

{0, . . . ,m− 1}, where each of the m! possible

permutations has the same probability 1/(m!)

to be selected.

Table I

PSEUDOCODE: SPS-INDICATOR ( θ )

1. For the given θ, compute the prediction errors

for t ∈ {1, . . . , n}
εt(θ) , Yt − φT

t θ;

2. Evaluate

S0(θ) , R
− 1

2
n

1
n

n∑
t=1

φtεt(θ),

Si(θ) , R
− 1

2
n

1
n

n∑
t=1

αi,t φtεt(θ),

for i ∈ {1, . . . ,m− 1};

3. Order scalars {∥Si(θ)∥2} according to ≻π;

4. Compute the rank R(θ) of ∥S0(θ)∥2 in the ordering,

where R(θ) = 1 if ∥S0(θ)∥2 is the smallest in the

ordering, R(θ) = 2 if ∥S0(θ)∥2 is the second

smallest, and so on.

6. Return 1 if R(θ) ≤ m− q, otherwise return 0.

Table II

Observe that the LS estimate, θ̂n, has by definition the
property that S0(θ̂n) = 0. Therefore, the LSE is included in
the SPS confidence region, assuming that it is non-empty.1

The SPS method in the form developed in this section lends
itself nicely to problems where the indicator function should
only be evaluated for finitely many values of θ. This happens
for example in certain hypothesis testing or change detection
problems. Later, we will discuss ways to make SPS suitable
for problems where one wishes to represent the whole SPS
confidence regions compactly.

1There is a positive, but negligible, probability that the SPS confidence
region is empty. This happens, if for at least m − q indices i, the {αi,t}
sequences are sequences of all +1s or all −1s, and m − q or more of the
corresponding {Si} functions are ranked smaller than S0 by π.
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V. THEORETICAL RESULTS

A. Exact Confidence

The most important property of the SPS method is that the
regions it generates have exact confidence probabilities for any
finite sample. The following theorem holds.

Theorem 1: Assuming A1 and A2, the confidence probability
of the constructed confidence region is exactly p, that is,

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
= p.

A formal proof of Theorem 1 can be found in Appendix A.
Interestingly, the proof does not depend on the applied norm,
and the result keeps its validity regardless of the norm used
in step 3 in the SPS indicator function when constructing Θ̂n.
Since the confidence probability is exact, no conservatism is
introduced. Moreover, the statistical assumptions imposed on
the noise are mild, e.g., knowledge of the particular noise
distribution is not assumed, the noise can change in each time
step, and there are no moment or density assumptions.

The simulation examples in Section VII also demonstrate
that, when the noise is stationary, the SPS confidence regions
compare in size with the approximate confidence regions ob-
tained by applying the asymptotic system identification theory,
while, unlike asymptotic regions, the SPS regions maintain
their guaranteed validity even for nonstationary noise patterns.

B. Star Convexity

Earlier we observed that the LSE is in the SPS confidence
region. The next theorem makes our claim that the SPS regions
are built around the LS estimate more precise.

Recall that set X ⊆ Rd is called star convex if there is a
star center c ∈ Rd, such that

∀x ∈ X , ∀β ∈ [0, 1] : β x+ (1− β) c ∈ X .

All convex sets are star convex, but the converse is not true.
It is easy to construct examples that show that, in general,

the SPS confidence regions are not convex. For example, if
q = 1, the SPS region is the union of ellipsoids, and it is
typically non-convex. On the other hand, as the next theorem
demonstrates, the SPS confidence regions are star convex.

Theorem 2: Assuming A1 and A2, the SPS confidence
regions are star convex with the LS estimate as a star center.

The proof of Theorem 2 is given in Appendix B.
This result not only shows that the SPS regions are centered

around the LS estimate, but it also provides a basis for finding
the boundary of the SPS region. In fact, one can search rays
from the LS estimate outwards for the first point which is not
in the SPS region, and by the star convexity property this will
be a boundary point of the SPS region.

C. A More General Algorithm: Block SPS

The fundamental assumption regarding the noise terms is
that they are symmetric about zero and independent. Theo-
retically, it is easy to relax the independence assumption and
allow dependent noises as long as their signs are independent.

Moreover, robustness against the independence assumption
can be boosted by using a modified SPS method where the
random signs {αi,t} are kept at the same value +1 or −1
for blocks of T consecutive time instants before the sign is
again randomly drawn. The only difference is in point 3 of the
SPS-Initialization algorithm, which now becomes (assuming,
for simplicity, that n/T is an integer)

3’. Generate n
T (m− 1) i.i.d. random signs {ᾱi,k} with

P(ᾱi,k = 1) = P(ᾱi,k = −1) = 1
2 ,

for i ∈ {1, . . . ,m− 1}, k ∈ {1, . . . , n/T}, and let

αi,(k−1)T+j = ᾱi,kT

for i ∈ {1, . . . ,m− 1}, k ∈ {1, . . . , n/T}, and

j ∈ {1, . . . T}.

If the noise is dependent and T is larger than the dominant
time constant of the noise dynamics, then the blocks of T con-
secutive noise terms act approximately as independent noise
terms so that the result in Theorem 1 holds approximately.

When instead this modified Block SPS method is applied
to systems where the noise is actually independent, the exact
confidence result in Theorem 1 remains valid as can be seen
from an inspection of the proof. Moreover, for independent
noise, the regions constructed by SPS and Block SPS methods
are not very different and Block SPS is only marginally worse.
See Section VII-E for a simulation example.

D. Comparison to Bootstrap

A common feature in SPS and bootstrap approaches is that
randomization is an essential ingredient.

In case of linear regression problems [23], [24], [25], we are
interested in the distribution of the noise, however, we do not
have a direct access to the noise samples. In order to overcome
this difficulty, bootstrap typically uses the prediction errors and
works with the sample of residuals, {εt(θ)}, as an estimate
of the noise, instead of the sample of the (unobserved) noise
terms, {Nt}. One can use residuals for different parameters to
test various hypotheses [25] or, as is common, one can work
with the prediction errors of a nominal estimate [23], [24],
such as the LS residuals, {εt(θ̂n)}.

The latter case corresponds to work with the new data
set(s) {φκ, Y

′
κ} where Y ′

κ is generated by Y ′
κ = φT

κ θ̂n + ε̃κ,
with ε̃κ randomly selected (uniformly, with replacement) from
{εt(θ̂n)}. Various statistics can then be calculated from the
resampled data set(s). An alternative way of generating data
set(s) is pairs bootstrap [24], where data sets are generated by
random selection (with replacement) of regressor-output pairs,
(φτ , Yτ ), and the bootstrap samples are built from these pairs.

The domain of applicability of bootstrap is larger than SPS,
since there is no assumption that the noise is symmetric and
there are also bootstrap methods that can handle correlated
noise. Moreover, bootstrap can be applied to non-linear mod-
els. On the other hand, while there are theoretical asymptotic
results for bootstrap methods, there are few finite sample
results and hence the results based on bootstrap are in most
cases only approximate in the finite sample case. For example,
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if the approach for estimating the covariance matrix of the LS
estimate, found in Ch.9 of Efron and Tibshirani’s classical
book [23], is combined with an assumption that the estimate
has a Gaussian distribution, then the confidence ellipsoids of
asymptotic system identification theory are obtained and they
are approximate and not exact in a finite sample setting.

VI. ELLIPSOIDAL APPROXIMATION ALGORITHM

Given a particular value of θ, it is easy to check whether θ
is in the confidence region. All we have to do is to calculate
the {∥Si(θ)∥2} functions for that θ and compare them. Hence
the SPS confidence regions can be constructed by checking
each parameter value on a grid. However, this approach is
computationally demanding and suffers from the “curse of
dimensionality”. Here, we present an approximation algorithm
for SPS that can be efficiently computed (i.e., in polynomial
time) and offers a compact representation in the form of
ellipsoidal over-bounds. An alternative approach based on
interval analysis has also been proposed [26], [27].

A. Ellipsoidal Outer Approximation

Expanding ∥S0(θ)∥2, we find that it can be written as

∥S0(θ)∥2=
[
1

n

n∑
t=1

φt(Yt − φT
t θ)

]T
R−1

n

[
1

n

n∑
t=1

φt(Yt − φT
t θ)

]
=

[
1

n

n∑
t=1

φtφ
T
t (θ − θ̂n)

]T
R−1

n

[
1

n

n∑
t=1

φtφ
T
t (θ − θ̂n)

]
= (θ − θ̂n)

TRn(θ − θ̂n),

For the purpose of finding an ellipsoidal over-bound we can
ignore the random ordering used when ||S0(θ)||2 and ||Si(θ)||2
are equal, and consider the set given by those values of θ at
which q of the ||Si(θ)||2 are larger or equal to ||S0(θ)||2, i.e.,

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ r(θ)
}
,

where r(θ) is the q th largest value of functions {∥Si(θ)∥2},
i = 1, . . . ,m − 1. The idea is now to seek an over-bound
by replacing r(θ) with a parameter independent r. This outer
approximation will hence have the same shape and orientation
as the asymptotic confidence ellipsoid (4), but it will have
a different volume. The outer approximation is a guaranteed
confidence region for finitely many data points. Moreover, it
will have a compact representation, since it is characterized in
terms of θ̂n, Rn and r.

B. Convex Programming Formulation

Comparing ∥S0(θ)∥2 with one single ∥Si(θ)∥2 function, we
have

{ θ : ∥S0(θ)∥2 ≤ ∥Si(θ)∥2 }
⊆ { θ : ∥S0(θ)∥2 ≤ max

θ:∥S0(θ)∥2≤∥Si(θ)∥2
∥Si(θ)∥2 }.

Relation ∥S0(θ)∥2 ≤ ∥Si(θ)∥2 can be rewritten as

(θ − θ̂n)
TRn(θ − θ̂n) ≤

[
1

n

n∑
t=1

αi,tφt(Yt − φT
t θ)

]T
R−1

n

[
1

n

n∑
t=1

αi,tφt(Yt − φT
t θ)

]
= θTQiR

−1
n Qiθ − 2 θTQiR

−1
n ψi + ψT

i R
−1
n ψi,

where matrix Qi and vector ψi are defined as

Qi , 1

n

n∑
t=1

αi,tφtφ
T
t ,

ψi , 1

n

n∑
t=1

αi,tφtYt.

Noting that

max
θ:∥S0(θ)∥2≤∥Si(θ)∥2

∥Si(θ)∥2 = max
θ:∥S0(θ)∥2≤∥Si(θ)∥2

∥S0(θ)∥2

and using the notation z , R
1
2T
n (θ − θ̂n), the quantity

maxθ:∥S0(θ)∥2≤∥Si(θ)∥2 ∥Si(θ)∥2 can be obtained as the value
of the following optimization problem

maximize ∥z∥2

subject to zTAiz + 2zTbi + ci ≤ 0,

(5)

where Ai, bi and ci are defined as

Ai , I −R
− 1

2
n QiR

−1
n QiR

− 1
2T

n ,

bi , R
− 1

2
n QiR

−1
n (ψi −Qiθ̂n),

ci , −ψT
i R

−1
n ψi + 2θ̂TnQiR

−1
n ψi − θ̂TnQiR

−1
n Qiθ̂n.

This program is not convex in general. However, it can be
shown [28, Appendix B] that strong duality holds, so that the
value of the above optimization program is equal to the value
of its dual which can be formulated as

minimize γ

subject to λ ≥ 0[
−I + λAi λbi
λbTi λci + γ

]
≽ 0,

(6)

where “≽ 0” denotes that a matrix is positive semidefinite.
This program is convex, and can be easily solved using, e.g.,
Yalmip [29] and a solver such as SDPT3.

Letting γ∗i be the value of program (6), we now have

{θ : ∥S0(θ)∥2 ≤ ∥Si(θ)∥2} ⊆ {θ : ∥S0(θ)∥2 ≤ γ∗i }.

Thus,

Θ̂n ⊆ ̂̂Θn ,
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ r
}
,

where r = q th largest value of γ∗i , i = 1, . . . ,m− 1.̂̂Θn is the sought outer approximation. It is clear that

P
(
θ∗ ∈ ̂̂Θn

)
≥ 1− q

m
= p,

for any finite n.
The pseudocode for computing ̂̂Θn is given in Table III.
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PSEUDOCODE: SPS-OUTER-APPROXIMATION

1. Compute the least-squares estimate,

θ̂n = R−1
n

[
1
n

n∑
t=1

φtYt

]
;

2. For i ∈ {1, . . . ,m− 1}, solve the optimization

problem (5), and let γ∗i be the optimal value;

3. Let r be the q th largest γ∗i value;

4. The outer approximation of the SPS confidence

region is given by the ellipsoid̂̂Θn =
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ r
}

.

Table III

VII. SIMULATION EXAMPLES

In this section we illustrate SPS with numerical examples.
The confidence regions constructed by SPS are compared with
those obtained using asymptotic system identification theory,
and, when the noise is i.i.d. Gaussian, with the ellipsoids based
on the F -distribution. The effect of using norms other than
the 2-norm as well as the presence of unmodelled dynamics
are also studied. The block SPS algorithm is illustrated on an
example where the assumptions on the noise are not satisfied.

A. Second Order FIR System

We consider a second order data generating FIR system

Yt = b∗1Ut−1 + b∗2Ut−2 +Nt,

where b∗1 = 0.7 and b∗2 = 0.3 are the true system parameters
and {Nt} is a sequence of i.i.d. Laplacian random variables
with zero mean and variance 0.1. The input signal is given by

Ut = 0.75Ut−1 + Vt,

where {Vt} is a sequence of i.i.d. Gaussian random variables
with zero mean and variance 1.

The model class is the class of second order FIR models,
and hence the predictor is given by

Ŷt(θ) = b1Ut−1 + b2Ut−2 = φT
t θ,

where θ = [ b1, b2 ]
T is the model parameter, and φt =

[Ut−1, Ut−2 ]
T.

Based on n = 25 data points (φt, Yt) =
([Ut−1, Ut−2 ]

T, Yt), t = 1, . . . , 25, we want to find a
95% confidence region for θ∗ = [b∗1, b

∗
2]

T. Following the
SPS procedure we first compute the matrix

R25 =
1

25

25∑
t=1

[
Ut−1

Ut−2

]
[Ut−1, Ut−2] ,

and find a factor R
1
2
25 such that R

1
2
25R

1
2T
25 = R25.

Then we compute the reference sum

S0(θ) = R
− 1

2
25

1

25

25∑
t=1

[
Ut−1

Ut−2

]
(Yt − b1Ut−1 − b2Ut−2),
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Figure 1. 95% confidence regions, n = 25, m = 100.
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Figure 2. 95% confidence regions, n = 400, m = 100.
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Figure 3. 95% confidence regions using various norms, n = 400, m = 100.

and the 99 sign perturbed sums, i = 1, . . . , 99,

Si(θ) = R
− 1

2
25

1

25

25∑
t=1

αi,t

[
Ut−1

Ut−2

]
(Yt − b1Ut−1 − b2Ut−2),

where αi,t are i.i.d. random signs. Moreover, we generate a
random permutation π to break possible ties.

The confidence region is constructed as the values of θ for
which at least 5 of the ||Si(θ)||2, i = 1, . . . , 99, functions are
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m 20 60 100 200 400 600

average area 0.1041 0.0837 0.0806 0.0788 0.0778 0.0777

Table IV
AVERAGE AREA, n = 25.

larger than ||S0(θ)||2. Here m = 100 and q = 5 and it follows
from Theorem 1 that the constructed region contains the true
parameter with exact probability 1− 5

100 = 95%.
The SPS confidence region is shown in Figure 1 together

with the outer approximation and the confidence region based
on the asymptotic system identification theory.

It can be observed that the non-asymptotic SPS region
is similar in shape to, and not too different in size from,
the asymptotic confidence region, while it has the advantage
that it is guaranteed to contain the true parameter with exact
probability 95%, unlike the ones based on asymptotic results.

Next, the number of data points were increased to n = 400,
still with m = 100 and q = 5, and the confidence regions in
Figure 2 were obtained. As can be seen, the differences be-
tween the various regions get smaller, and the SPS confidence
region concentrates around the true parameter as n increases.

Finally, the effect of using ∥ · ∥1 or ∥ · ∥∞ norms, instead of
∥·∥2, was considered. Recalling that the SPS regions are exact
for each norm, the theory can be used to establish a precise
confidence for each construction. The obtained confidence
regions are illustrated in Figure 3.

B. Choice of m and q

The probability of the SPS confidence region is 1 − q/m
and hence there are many choices of q and m that give the
same probability. Based on experience, selecting q and m too
low increases the stochastic volatility in the SPS construction,
and, consequently, the average area of the confidence regions
tends to be larger. However, a saturation effect occurs so that
pushing q and m beyond certain values has no practical benefit.
This is illustrated in Table IV where the average area of the
95% confidence regions based on 500 simulations of the same
system as in the previous section with n = 25 is evaluated.
As we can see, the average area decreases as m increases, but
there is little reduction in the average area by increasing m
beyond 200.

In all simulation examples above Laplacian noise was used
which is heavy-tailed. However, very similar results were
obtained with, for example, uniform and Gaussian noises [20].

C. Comparing with Exact Confidence Ellipsoids Based on the
F-distribution

In the special case that the noise {Nt} is a sequence of i.i.d.
Gaussian random variables, the quantity

n

d

1

σ̂2
n

(θ∗ − θ̂n)
TRn(θ

∗ − θ̂n)

is distributed according to an F (d, n − d) distribution where
d is the number of parameters in θ and σ̂2

n is given by (3).
In this case

Θ̃n ,
{
θ ∈ Rd : (θ − θ̂n)

TRn (θ − θ̂n) ≤ µdσ̂2
n

n

}
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Figure 4. 95% confidence regions, n = 25, m = 100. The solid line gives
the SPS region. The dashed line gives the confidence ellipsoid based on the
F -distribution.

SPS F -distribution

n = 25 0.07876 0.065658

n = 200 0.00689 0.00650

Table V
AVERAGE AREA.

contains the true parameter value with exact probability FF (µ)
where FF (µ) is the cumulative distribution of an F (d, n− d)
distributed random variable.

SPS constructs exact confidence regions under much weaker
conditions, and even when the noise is i.i.d. Gaussian we
do not loose much since the SPS confidence regions are
comparable to those obtained using the F -distribution as the
following results show.

We consider the same system as in the previous section
with n = 25 data points. This time {Nt} was a sequence
of i.i.d. zero mean Gaussian random variables with variance
0.1. Figure 4 shows the 95% confidence regions we obtained
in four simulation trials, and similar plots with n = 200 are
shown in Figure 5. Table V gives the average area of the
confidence ellipsoids based on 1000 Monte Carlo simulations
with n = 25 and n = 200. The average area increases by 20%
(n = 25) and 6% (n = 200), when the prior information about
the noise is reduced from i.i.d. Gaussian to independent and
symmetrically distributed.

D. Undermodelling

The true data generating system is now given by

Yt = b∗1Ut−1 + b∗2Ut−2 + b∗3Ut−3 +Nt,

where b∗1 = 0.7, b∗2 = 0.3 and b∗3 = 0.21 are the true system
parameters. Nt and Ut are as in Section VII-A.
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Figure 5. 95% confidence regions, n = 200, m = 100. The solid line gives
the SPS region. The dashed line gives the confidence ellipsoid based on the
F -distribution.
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Figure 6. 95% confidence regions, n = 25. The true system is a third order
system, while the model is second order.

The model class is still the class of all second order FIR
systems with predictors

Ŷt(θ) = b1Ut−1 + b2Ut−2.

In this case the model class is not rich enough to contain
the true system. The asymptotic least squares estimate as
the number of data points tends to infinity is the value of
θ = [b1, b2]

T such that E(Yt − Ŷt(θ))
2 is minimised. For

the input signal used these values are b̂∗1 = b∗1 = 0.7 and
b̂∗2 = b∗2 + 0.75b∗3 = 0.4575. A Monte Carlo simulation with
1 000 000 run found that the 95% confidence region contained
the asymptotic LS estimate with empirical probability 0.9509
with n = 25,m = 100 and q = 5, which shows that in this ex-
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Figure 7. 95% confidence regions, n = 200, m = 100. The solid line gives
the standard SPS region and the dashed line gives the block SPS region. The
dash dotted line gives the confidence ellipsoid based on asymptotic system
identification theory.

ample SPS exhibits robustness with respect to undermodelling.
A typical result is shown in Figure 6.

E. Assumptions on the Noise are not Satisfied

In this example, the assumptions on the noise are not
satisfied. The system is the same as in the previous sections,
but the noise is now the autoregressive process

Nt = 0.3Nt−1 +
√
1− 0.32Wt,

where {Wt} is i.i.d. Gaussian with variance 0.1. n = 200 data
points are available and the aim is as before to generate a 95%
confidence region. Due to the correlation in the noise both
standard SPS and asymptotic system identification theory fail
to produce confidence regions with the required probability.
However, by using block SPS as described in Section V-C
where the random signs kept their values 1 or -1 for 10
consecutive values we got a confidence probability much
closer to the desired 95% than by using standard SPS or
asymptotic system identification theory as shown in Table VI.

Examples of confidence regions obtained in four simulation
trials are shown in Figure 7. This demonstrates that block SPS
works well also when the assumptions on the noise are not
satisfied, and although the results are not precisely guaranteed
anymore, it still gives good approximations.

Further, we see that we do not loose too much by using
block SPS instead of the standard SPS when the assumptions
on the noise are satisfied. Table VII shows the average area
of the 95% confidence sets based on 1000 Monte Carlo
simulations when the noise was i.i.d. Gausian with variance
0.1. The average area only increased with 8.9%.
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SPS Block SPS Asymptotic theory

0.888 0.944 0.883

Table VI
EMPIRICAL PROBABILITIES BASED ON 106 MONTE CARLO SIMULATIONS.

SPS Block SPS

0.00682 0.00743

Table VII
AVERAGE AREA, n = 200.

F. Higher Order System

In this experiment, the data generating system is an eight
order FIR system, that is,

Yt = b∗1 Ut−1 + b∗2 Ut−2 + b∗3 Ut−3 + b∗4 Ut−4 + b∗5 Ut−5

+b∗6 Ut−6 + b∗7 Ut−7 + b∗8 Ut−8 +Nt,

with θ∗ = [ 0.7, 0.3, 0.21, 0.2, 0.15, 0.25, 0.1, 0.05 ]T. Pro-
cesses {Ut} and {Nt} are the same as in Section VII-A.

We ran 1000 Monte Carlo simulations with n = 200, 800
and 3200, and computed the ellipsoidal over-bound for the
95% confidence region using m = 100 and q = 5.

The computational time for computing a single ellipsoidal
over-bound with 3200 data points was around 23 seconds on
a standard laptop using Yalmip and SDPT3, showing that the
computational burden of the approximation is quite modest.

Table VIII gives the relative increase per dimension of
the ellipsoidal over-bound as compared with the ellipsoid of
the asymptotic theory. The confidence ellipsoids based on
asymptotic theory are smaller than the ones based on the
ellipsoidal over-bound, but the difference gets smaller as n
increases, and the probability is guaranteed using SPS while
it is not when using asymptotic theory.

VIII. SUMMARY AND CONCLUSION

In this paper a new system identification method called
Sign-Perturbed Sums (SPS) has been introduced. SPS allows
the construction of guaranteed non-asymptotic confidence
regions, which are built around the least-squares estimate
and contain the true system parameter with a user-chosen
exact probability for any finite data set. SPS works under
mild statistical assumptions on the system noise, and it is
non-conservative, i.e., its confidence probability is exact. In
addition, it was shown that the SPS confidence regions are
star convex with the LS estimate as a star center.

Evaluating whether a given parameter value θ belongs to
the SPS confidence region is a task that can be carried out at
low computational cost. This makes SPS an effective method
to apply when only a finite number of candidate θ values have
to be tested. On the other hand, finding the precise boundary of
the SPS set can be computationally demanding in general. In
order to overcome this issue, an algorithm has been introduced
that provides an outer approximation of the SPS region in the
form of an ellipsoid. It was demonstrated that such over-bound
can be efficiently computed by convex programming methods.

Simulation experiments demonstrated that the SPS method
works well, and that the confidence regions have similar size

Relative increase per dimension
Data points of the ellipsoidal over-bound

n = 200 1.78

n = 800 1.34

n = 3200 1.17

Table VIII
VOLUMES. 8TH ORDER SYSTEM.

and shape as the heuristic ellipsoids of the asymptotic theory
or the exact ellipsoids based on the F -distribution when the
noise is i.i.d. Gaussian.

In this paper we assumed that the regressors are determin-
istic. While it is easy to generalize our results to the case
of random regressors that are independent of the noise, the
extension to the case where the regressors can depend on the
noise terms is non-trivial. Generalizing the method to that case
is of high practical importance. We leave this to further work,
noting that some preliminary results addressing this issue were
presented in earlier conference papers [18], [19].
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APPENDIX A
PROOF OF THEOREM 1:EXACT CONFIDENCE

We begin with a definition and some lemmas.

Definition 1: Let Z1, . . . , Zk be a finite collection of random
variables and ≻ a strict total order. If for all permutations
i1, . . . , ik of indices 1, . . . , k we have

P(Zik ≻ Zik−1
≻ · · · ≻ Zi1) =

1

k!
,

then we call {Zi} uniformly ordered w.r.t. order ≻.

Lemma 1: Let α, β1, . . . , βk be i.i.d. random signs, then the
random variables α, α · β1, . . . , α · βk are i.i.d. random signs.

Proof. Let c0, c1, . . . , ck be a fixed vector of signs, i.e., ci ∈
{−1, 1}. Then, we have

P(α = c0, αβ1 = c1, . . . , αβk = ck)

= P(α = c0, β1 = c0c1, . . . , βk = c0ck)

= P(α = c0)P(β1 = c0c1) . . . P(βk = c0ck)

= P(α = c0)P(αβ1 = c1) . . . P(αβk = ck),

where we have used that the original collection was inde-
pendent, and that αβi and βi has the same probability mass
function, i.e., for all signs a, b ∈ {−1, 1}: P(βi = b) =
P(αβi = a) = 1/2. �

Lemma 2: Let X and Y be two independent, Rd-valued
and Rk-valued random vectors, respectively. Let us consider

a (measurable) function g : Rd×Rk → R and a (measurable)
set A ⊆ R. If we have P( g(x, Y ) ∈ A ) = p, for all (constant)
x ∈ Rd, then we also have P( g(X,Y ) ∈ A ) = p.

Proof. Define IA as follows

IA(x, y) ,
{

1 if g(x, y) ∈ A,
0 otherwise,

which is the indicator function of the event that g(X,Y ) ∈
A. Now, let us define function iA : Rd → R as iA(x) ,
E [ IA(x, Y ) ], where x ∈ Rd is a constant, therefore, iA(x)
is a number (non-random). We know that for all x ∈ Rd we
have iA(x) = P( g(x, Y ) ∈ A ) = p. Then, by applying the
properties of the conditional expectation [30], we have that

P( g(X,Y ) ∈ A ) = E [ IA(X,Y ) ]

= E [E [ IA(X,Y ) |X ] ] = E [ iA(X) ] = E [ p ] = p,

which completes the proof of the lemma. �

The following lemma highlights an important property of
the ≻π relation that was introduced in Section IV.

Lemma 3: Let Z1, . . . , Zk be real-valued, i.i.d. random
variables. Then, they are uniformly ordered w.r.t. ≻π.

Proof. Since ≻π is a total order which resolves ties, there
is a unique ordering for all realizations Z1(ω), . . . , Zk(ω)
and π(ω). Therefore, the events Zik ≻π · · · ≻π Zi1 define
a complete system of events. There are k! such orderings,
thus, in order to complete the proof we need to show that
each such ordering has the same probability. Let us select
two orderings Zik ≻π · · · ≻π Zi1 and Zjk ≻π · · · ≻π Zj1 ,
which have probabilities, pi and pj , respectively. We will show
that pi = pj . First, we define some new random variables
Z ′
i1

, Zj1 , . . . , Z
′
ik

, Zjk . Then, Z ′
ik

≻π · · · ≻π Z ′
i1

has the same probability as Zjk ≻π · · · ≻π Zj1 , since the
corresponding variables are the same and π is completely
symmetric with respect to the indices. Because {Zk} are i.i.d.,
Z ′
1, . . . , Z

′
k has the same distribution as Z1, . . . , Zk. Then,

Z ′
ik

≻π · · · ≻π Z ′
i1

must have the same probability as
Zik ≻π · · · ≻π Zi1 , namely pi. Thus, pj = pi. �

Proof of Theorem 1

By construction, parameter θ∗ is in the confidence region
if R(θ∗) ≤ m − q. This means that ∥S0(θ

∗)∥2 takes one
of the positions 1, . . . ,m − q in the ascending order (w.r.t.
≻π) of variables {∥Si(θ

∗)∥2}. We are going to prove that the
{∥Si(θ

∗)∥2} are uniformly ordered, hence ∥S0(θ
∗)∥2 takes

each position in the ordering with probability 1/m, thus its
rank is at most m− q with probability 1− q/m.

First, note that for θ = θ∗, all Si(·) functions have the form

Si(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

αi,t φtNt,

for all i ∈ {0, . . . ,m− 1}, where α0,t , 1, t ∈ {1, . . . , n}.
Therefore, all the Si(·) functions depend on the perturbed

noise sequence, {αi,tNt}, via the same function for all i,
which we denote by S(αi,1N1, . . . , αi,nNn) , Si(θ

∗).
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Since each Nt is symmetric, we know that sign(Nt) and
|Nt| are independent. Then, for all i and t, we introduce
γi,t , αi,t sign(Nt). Using that {αi,t} are i.i.d. random
signs, independent of the other random elements, {Nt} are
independent, and applying Lemma 1, it follows that {γi,t} are
not only independent of {|Nt|}, but also i.i.d. random signs.

After fixing a realization of {|Nt|}, called {vt}, we define
the real-valued variables {Zi} by

Zi , ∥S(γi,1v1, . . . , γi,nvn)∥2.

We know that, if the same (measurable) function is applied
to each element of an i.i.d. sample, then the result will
also be i.i.d.. Therefore, the {Zi} are i.i.d. random variables.
Consequently, Lemma 3 can be applied to show that {Zi} are
in fact uniformly ordered with respect to relation ≻π .

So far we have proved the theorem assuming that the
absolute values of the noises are constant, namely, the uniform
ordering property was achieved by fixing a realization of
{|Nt|}. However, the probabilities obtained are independent
of the particular realization of {|Nt|}, hence, Lemma 2 can
be applied to relax fixing the realization (i.e., in Lemma 2, X
plays the role of {|Nt|} and Y incorporates the other random
variables), and obtain the unconditional uniform ordering
property of {∥Si(θ

∗)∥2}, from which the theorem follows. �

APPENDIX B
PROOF OF THEOREM 2: STAR CONVEXITY

Let Φ , [φ1, . . . , φn ]
T, Di , 1/n ·Diag(αi,1, . . . , αi,n),

i ∈ {1, . . . ,m−1}, where Diag(·) is the diagonal matrix with
its arguments on the main diagonal, and Qi , ΦTDiΦ. Notice
that ∥Si(θ)∥2 and ∥S0(θ)∥2 are quadratic forms with Hessian
QiR

−1
n Qi and Rn, respectively. The following lemma relates

these Hessians.

Lemma 4: For all i, we have Rn ≽ QiR
−1
n Qi in the Löwner

partial ordering, i.e., Rn −QiR
−1
n Qi is positive semidefinite.

Proof. Since Rn ≻ 0, a Schur complement argument, [31],
shows that the lemma statement is equivalent to the positive
semidefiniteness of the matrix

Bi ,
[
Rn Qi

Qi Rn

]
=

[
1
nΦ

TΦ ΦTDiΦ
ΦTDiΦ

1
nΦ

TΦ

]
.

Matrix Bi can be decomposed as

Bi =

[
ΦT 0
0 ΦT

] [
1
nI Di

Di
1
nI

] [
Φ 0
0 Φ

]
,

so that Bi is positive semidefinite if and only if the middle
matrix is [32]. Resorting again to a Schur complement
argument, the middle matrix is positive semidefinite if
1
nI − nDiDi is positive semidefinite, which is clearly true
since this latter matrix is in fact the zero matrix. �

Introduce now the set

Ei , { θ ∈ Rd : ∥S0(θ)∥2 ≤ ∥Si(θ)∥2 }.

Since in Lemma 4 we have proven that the Hessian of
∥S0(θ)∥2 is no smaller than that of ∥Si(θ)∥2, it follows that
∥S0(θ)∥2 − ∥Si(θ)∥2 is a convex function, and { θ ∈ Rd :

∥S0(θ)∥2 − ∥Si(θ)∥2 ≤ 0 } = Ei is a convex set. Moreover,
θ̂n ∈ Ei since ∥S0(θ̂n)∥2 = 0. Likewise, one can prove that
set

Ēi , { θ ∈ Rd : ∥S0(θ)∥2 < ∥Si(θ)∥2 }

is convex or empty. Moreover, when it is not empty, it certainly
contains θ̂n. Indeed, ∥S0(θ̂n)∥2 = 0, so that for θ̂n not to
be in Ēi it must be that ∥Si(θ̂n)∥2 = 0 too. In addition,
since ∥S0(θ)∥2 and ∥Si(θ)∥2 are quadratic forms, also their
derivatives in θ̂n must be zero. Now, if by contradiction we
assume that Ēi ̸= ∅, then there is a point θ̄ ∈ Ēi and it holds
that ∥S0(θ̄)∥2 < ∥Si(θ̄)∥2. Over the line segment connecting
θ̂n to θ̄, function ∥Si(θ)∥2 − ∥S0(θ)∥2 then grows from 0 to
a positive value, and since it moves away from θ̂n with zero
slope, it must have in some point in between θ̂n to θ̄ a positive
curvature, a fact that contradicts Lemma 4.

We are now ready to establish the result in Theorem 2.
Let

Eπ
i , { θ ∈ Rd : ∥S0(θ)∥2 ≺π ∥Si(θ)∥2 }.

Notice that, depending on π, the set Eπ
i is either Ei or Ēi.

Therefore, Eπ
i is either empty or it is a convex set containing

θ̂n. Next, note that the SPS confidence region Θ̂n can be
written as

Θ̂n =
∪

I⊆M
|I|=q

∩
i∈I

Eπ
i ,

where M = {1, . . . ,m − 1} and | · | denotes cardinality.
To prove this note that if we take a finite index set of
size q, {i1, . . . , iq}, then the intersection of the sets Eπ

ij
,

j ∈ {1, . . . , q}, contains all the parameter values θ for which
∥S0(θ)∥2 is less than (w.r.t. ≺π) all the functions ∥Si(θ)∥2
that have indexes from the index set {i1, . . . , iq}. When union
is taken over all possible index sets, one obtains the set of
parameter values θ for which ∥S0(θ)∥2 is less than (w.r.t.
≺π) at least q other functions ∥Si(θ)∥2, which is exactly the
definition of the SPS confidence region. Finally, the theorem
claim follows since unions and intersections of star convex
sets having a common star center are themselves star convex
with the same center. �
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University (ELTE), Budapest, Hungary. Previously,
he received Master’s degrees in computer science
combined with mathematics (2001) as well as in phi-
losophy (2006), also from ELTE. During his studies
he spent semesters and internships at the Eindhoven
University of Technology, Netherlands (2001), the

British Telecom, UK (2002), and the Johannes Kepler University, Linz, Austria
(2003). He was a Postdoctoral Researcher at the Université catholique de
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