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a b s t r a c t

Sign-Perturbed Sums (SPS) is a system identification method that constructs non-asymptotic confidence
regions for the parameters of linear regressionmodels undermild statistical assumptions. One of its main
features is that, for any finite number of data points and any user-specified probability, the constructed
confidence region contains the true system parameter with exactly the user-chosen probability. In this
paper we examine the size and the shape of the confidence regions, and we show that the regions are
strongly consistent, i.e., they almost surely shrink around the true parameter as the number of data
points increases. Furthermore, the confidence region is contained in a marginally inflated version of
the confidence ellipsoid obtained from the asymptotic system identification theory. The results are also
illustrated by a simulation example.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Models of dynamical systems are of widespread use in many
fields of science and engineering. Such models are often obtained
using system identification techniques, that is, the models are
estimated from observed data. There will always be uncertainty
associated with models of dynamical systems, and an important
problem is the uncertainty evaluation. For example, if the model
is going to be used for design, the model uncertainty will be one
of the factors which determine how much robustness needs to be
built into the design. A common way to characterise the uncer-
tainty in the model parameter is to use confidence regions, and
in earlier papers (Csáji, Campi, & Weyer, 2012, 2015), we intro-
duced the Sign-Perturbed Sums (SPS) method for the construction
of confidence regions for the parameters of linear regression mod-
els. The main features of the SPS method are that it constructs
confidence regions from a finite number of data points and that
the confidence regions contain the true parameter with an exact
user-chosen probability. This is in contrast to asymptotic theory of
system identification, e.g. Ljung (1999), which delivers confidence

✩ The material in this paper was partially presented at the 53rd IEEE Conference
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was recommended for publication in revised form by Associate Editor Alessandro
Chiuso under the direction of Editor Torsten Söderström.
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ellipsoids which are only guaranteed as the number of data points
tends to infinity. SPS has some similarities with the Leave-out
Sign-dominant Correlation Regions (LSCR) method (Campi, Ko, &
Weyer, 2009; Campi & Weyer, 2005, 2010; Dalai, Weyer, & Campi,
2007) which also generates confidence regions based upon a fi-
nite number of data points. However, unlike SPS, LSCR usually
only provides an upper bound on the probability that the true
parameter belongs to the confidence region. Numerical implemen-
tations and further developments in the vein of LSCR and SPS
are considered in Granichin (2012), Kieffer and Walter (2013a,b),
Kolumbán, Vajk, and Schoukens (2015) and Schoukens, Rolain,
Vandersteen, and Pintelon (2013), while other methods and stud-
ies of finite sample properties in system identification can be found
in Dabbene, Sznaier, and Tempo (2014) and den Dekker, Bombois,
and Van den Hof (2008).

Though the main draw card of SPS is the finite sample proper-
ties, the asymptotic properties are also of interest, since any rea-
sonable method for uncertainty evaluation should deliver smaller
and smaller confidence sets as the information about the system
increases. Here, we analyse the asymptotic properties of SPS and
we show that
• SPS is strongly consistent (Theorem 2), i.e., its confidence re-

gions shrink around the true parameter and, asymptotically, all
parameter values different from the true one will be excluded.

• The SPS confidence regions are contained in marginally in-
flated versions of the confidence ellipsoids obtained from the
asymptotic system identification theory (Theorem 3), where
the amount of inflation needed is asymptotically vanishing.

http://dx.doi.org/10.1016/j.automatica.2017.04.041
http://www.elsevier.com/locate/automatica
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A simulation example is also included which illustrates the be-
haviour of the SPS confidence region as the number of data points
and sign-perturbed sums increase.

A preliminary version of the consistency resultwas presented in
Csáji, Campi, andWeyer (2014) where, however, stronger assump-
tionswere applied.While the practical use of the SPSmethod is not
affected by the results in this paper, they may increase the users’
confidence in the method.

The paper is organised as follows. In Section 2 we introduce
the system setting and briefly summarise the SPS algorithm. The
asymptotic results are given in Section 3, and they are illustrated
by a simulation example in Section 4. The proofs can be found in
Appendices A–D.

2. Setting

Here we briefly summarise the Sign-Perturbed Sums (SPS)
method. Formore details, see Csáji et al. (2015).We consider linear
regression models of the form
Yt , ϕT

t θ
∗
+ Nt ,

where Yt is the output, Nt is the noise, ϕt is the regressor, θ∗ is the
true parameter (constant), and t is the time index. Yt and Nt are
scalars, while ϕt and θ∗ are d dimensional vectors. We consider a
sample of size n which consists of the regressors ϕ1, . . . , ϕn and
the outputs Y1, . . . , Yn.

The assumptions on the noise and the regressors are
A1 {Nt} is a sequence of independent random variables. Each Nt has

a symmetric distribution about zero.
A2 The regressors {ϕt} are deterministic and

Rn ,
1
n

n
t=1

ϕtϕ
T
t

is non-singular.
Although it is assumed that {ϕt} are deterministic, the results

in this paper also hold for stochastic regressors as long as they are
independent of the noise sequence.

2.1. Main idea of SPS

The least-squares estimate (LSE) of θ∗ is given by

θ̂n , argmin
θ∈Rd

n
t=1

(Yt − ϕT
t θ)

2,

which can be found by solving the normal equation, i.e.,
n

t=1

ϕt(Yt − ϕT
t θ) = 0.

The main building block of the SPS algorithm is, as the name sug-
gests,m − 1 sign-perturbed versions of the normal equation (nor-

malised by 1
nR

−
1
2

n ). The sign-perturbed sums are defined as

Si(θ) = R
−

1
2

n
1
n

n
t=1

αi,tϕt(Yt − ϕT
t θ),

i = 1, . . . ,m − 1, and a reference sum is given by

S0(θ) = R
−

1
2

n
1
n

n
t=1

ϕt(Yt − ϕT
t θ).

Here, R
1
2
n is a matrix1 that satisfies Rn = R

1
2
n R

1
2 T
n , and {αi,t} are

independent and identically distributed (i.i.d.) random variables

1 One such matrix R1/2
n can be found from the Cholesky decomposition of Rn .

However, the equation Rn = R1/2
n R1/2T

n admits more than one solution R1/2
n , and

any solution can be used.
Table 1
Pseudocode: SPS-initialisation.

1. Given a (rational) confidence probability p ∈ (0, 1), set integersm > q > 0
such that p = 1 − q/m;

2. Calculate the outer product
Rn , 1

n

n
t=1 ϕtϕ

T
t ,

and find a factor R1/2
n such that

R1/2
n R1/2T

n = Rn;
3. Generate n (m − 1) i.i.d. random signs {αi,t } with

P(αi,t = 1) = P(αi,t = −1) =
1
2 ,

for i ∈ {1, . . . ,m − 1} and t ∈ {1, . . . , n};
4. Generate a random permutation π of the set {0, . . . ,m − 1}, where each of

the m! possible permutations has the same probability 1/(m!).

Table 2
Pseudocode: SPS-indicator (θ ).

1. For a given θ , compute the prediction errors
εt (θ) , Yt − ϕT

t θ ,
for t ∈ {1, . . . , n};

2. Evaluate, for i ∈ {1, . . . ,m − 1}, functions

S0(θ) , R
−

1
2

n
1
n

n
t=1 ϕtεt (θ);

Si(θ) , R
−

1
2

n
1
n

n
t=1 αi,t ϕtεt (θ);

3. Order the scalars {∥Si(θ)∥2
} according to ≻π ;

4. Compute the rank R(θ) of ∥S0(θ)∥2 in the ordering, where R(θ) = 1 if
∥S0(θ)∥2 is the smallest in the ordering, R(θ) = 2 if ∥S0(θ)∥2 is the second
smallest, and so on.

5. Return 1 if R(θ) ≤ m − q, otherwise return 0.

(independent of {Nt}) that take on the values ±1 with probability
1/2 each.

The key observation is that for θ = θ∗ one has

S0(θ∗) = R
−

1
2

n
1
n

n
t=1

ϕtNt ,

Si(θ∗) = R
−

1
2

n
1
n

n
t=1

αi,tϕtNt .

As Nt is an independent and symmetric sequence, there is no
reason why ∥S0(θ∗)∥2 should be bigger or smaller than any other
∥Si(θ∗)∥2. This property is exploited in the construction of the
confidence regions where the values of θ for which ∥S0(θ)∥2 is
among the q largest ones are excluded. As stated in Theorem 1, the
confidence region has exact probability 1 − q/m of containing the
true system parameter. In Csáji et al. (2015) it has also been noted
thatwhen θ−θ∗ is ‘‘large’’, ∥S0(θ)∥2 tends to be the largest of them
functions, so that θ values far away from θ∗ will be excluded from
the confidence set.

2.2. Formal construction of the SPS confidence region

The SPS algorithm consists of two parts. The initialisation
(Table 1) sets the main global parameters and generates the
objects needed for the construction of the confidence region. In the
initialisation, the user provides the desired confidence probability
p. The second part (Table 2) evaluates an indicator function, which
determines if a particular parameter θ belongs to the confidence
region.

The random permutation π generated in the initialisation
defines a strict total order ≻π which is used to break ties in case
two values ∥Si(θ)∥2 and ∥Sj(θ)∥2, i ≠ j are equal. Given m scalars
{Zi}, i = 0, . . . ,m − 1, ≻π is

Zk ≻π Zj if and only if
Zk > Zj


or


Zk = Zj and π(k) > π(j)


.

The p-level SPS confidence region is given byΘn , {θ : SPS-INDICATOR(θ) = 1} .
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As it was shown in Csáji et al. (2015), the confidence region Θn
contains θ∗ with exact probability p as stated in the next theorem.

Theorem 1. Assuming A1 and A2, the confidence probability of the
constructed confidence region is exactly p,

P

θ∗

∈ Θn


= 1 −
q
m

= p.

Note that this probability is w.r.t. both the noises {Nt} and the
random signs {αi,t}, i.e., the probability is a product measure. It is
known that the LSE, θ̂n, has the property that S0(θ̂n) = 0 (cf. the
normal equation). Hence, the LSE is always included in the SPS
confidence region (Csáji et al., 2015), provided that it is non-empty.
Moreover the confidence region is star convex having the LSE as a
star centre, see again Csáji et al. (2015).

3. Asymptotic properties of SPS

In addition to the probability of containing the true parameter,
other important aspects are the size and the shape of the
confidence regions. In this section we show that, under some
additional mild assumptions, as the number of data points gets
larger, the confidence regions get smaller. Moreover, as both n
and m tend to infinity, the confidence regions are contained in
marginally inflated versions of the confidence ellipsoids obtained
from using asymptotic system identification results.

3.1. Strong consistency

Our first result shows that SPS is strongly consistent, in the
sense that the confidence sets shrink around the true parameter
as the sample size increases, and eventually exclude any other
parameters θ ′

≠ θ∗.
The following additional assumptions are needed:

A3 (nonvanishing excitation)

lim inf
n→∞

λmin(Rn) = λ̄ > 0

where λmin(·) denotes minimum eigenvalue.
A4 (regressor growth rate restriction)

∞
t=1

∥ϕt∥
4

t2
< ∞.

A5 (noise variance growth rate restriction)
∞
t=1

(E[N2
t ])

2

t2
< ∞.

In the theorem below, Bε(θ∗) denotes the Euclidean norm-ball
centred at θ∗ with radius ε > 0, i.e.
Bε(θ∗) , {θ ∈ Rd

: ∥θ − θ∗
∥ ≤ ε}.

Theorem 2 states that the confidence regions Θn will eventually be
included in any given norm-ball centred at the true parameter, θ∗.

Theorem 2. Assume A1,A2,A3,A4 and A5. Then, for all ε > 0
almost surely (a.s.) there exists an N̄ such that Θn ⊆ Bε(θ∗) for all
n > N̄ .

The proof of Theorem 2 can be found in Appendix A. The actual
sample size N̄ for which the confidence region will remain inside
an ε-ball depends on the noise realisation, that is N̄ is stochastic
and depends on a generic element of the underlying probability
space.

Note also that, for this asymptotic result to hold, the noise terms
can be nonstationary and their variances can grow to infinity,
as long as their growth-rate satisfies Assumption A5. Also, the
magnitude of the regressors can grow without bound, as long as
it does not grow too fast, as controlled by Assumption A4.
3.2. Asymptotic shape

Herewe analyse the shape of the SPS confidence regionswhen n
andm tend to ∞. Before we present our results, the confidence el-
lipsoids based on the asymptotic statistical theory, alsowidespread
in system identification, are briefly reviewed, see Ljung (1999) for
details.

3.2.1. Confidence ellipsoids of the asymptotic theory
Assuming that {Nt} are zero mean and i.i.d. with variance σ 2,

under mild conditions
√
n (θ̂n − θ∗) converges in distribution to

the Gaussian distribution with zero mean and covariance matrix
σ 2 R−1, where R = limn→∞ Rn assuming the limit exists. As a
consequence, n

σ 2 (θ̂n − θ∗)T R (θ̂n − θ∗) converges in distribution
to the χ2 distribution with dim(θ∗) = d degrees of freedom.

An approximate confidence region can be obtained by replacing
the matrix Rwith its estimate Rn,

Θn ,


θ : (θ − θ̂n)

T Rn (θ − θ̂n) ≤
µσ 2

n


,

where the probability that θ∗ is in the confidence region Θn is ap-
proximately p = Fχ2(µ), where Fχ2 is the cumulative distribution
function of the χ2 distribution with d degrees of freedom. In the
limit as n tends to infinity θ∗ is contained in the set Θn with prob-
ability Fχ2(µ), and this result also holds if σ 2 is replaced with its
estimate,

σ 2
n ,

1
n − d

n
t=1

(yt − ϕT
t θ̂n)

2.

3.2.2. Asymptotic shape of SPS confidence regions
In order to show that the SPS confidence regions asymptotically

have similar shapes as the standard confidence ellipsoids, the as-
sumptions on the regressors and the noise terms are strengthened
to
A6 (regressor growth rate restriction)

lim sup
n→∞

1
n

n
t=1

∥ϕt∥
4 < ∞.

A7 (i.i.d. noise with bounded 4th order moment): {Nt} is i.i.d. with
E[N2

t ] = σ 2 and E[N4
t ] = ρ < ∞.

The theorem below is given in terms of relaxed asymptotic
confidence ellipsoids, which are defined as

Θn(ε) ,


θ : (θ − θ̂n)

TRn(θ − θ̂n) ≤
µσ 2

+ ε

n


,

where ε > 0 is a margin. In the theorem, both n andm (recall that
m − 1 is the number of sign-perturbed sums) go to infinity, and
we use the notation Θn,m for the SPS region to explicitly indicate
the dependence on n and m. We take qm = ⌊(1 − p)m⌋, where
⌊(1− p)m⌋ is the largest integer less than or equal to (1− p)m, so
that Theorem 1 gives a confidence probability of 1−

qm
m , pm → p

from above asm → ∞.

Theorem 3. Assume A1,A2,A3,A6 and A7. Then, there exists a
doubly-indexed set of random variables {εn,m} such that
limm→∞ limn→∞ εn,m = 0 a.s., andΘn,m ⊆ Θn(εn,m).

The proof of Theorem 3 can be found in Appendix B.
We know from the Gauss–Markov theorem (Gentle, 2013;

Kailath, Sayed, & Hassibi, 2000) that, under the assumptions of
Theorem 3, the least-squares estimator is the best linear unbiased
estimator(BLUE). Theorem 3 demonstrates that in the long run
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Θn,m is almost surely contained in the asymptotic ellipsoid for the
least-squares estimate when the noise variance is increased by a
small (asymptotically vanishing) margin.

4. Simulation example

In this sectionwe illustrate the asymptotic properties of the SPS
method by a simulation example.

Consider the same second order data generating FIR system as
in Csáji et al. (2015), that is,
Yt = b∗

1Ut−1 + b∗

2Ut−2 + Nt ,

where θ∗
= [b∗

1 b∗

2]
T

= [0.7 0.3]T is the true parameter and {Nt} is
a sequence of i.i.d. Laplacian random variables with zeromean and
variance 0.1. The input is
Ut = 0.75Ut−1 + Vt ,

where {Vt} is a sequence of i.i.d. Gaussian random variables with
zero mean and variance 1. The predictor isYt(θ) = b1Ut−1 + b2Ut−2 = ϕT

t θ,

where θ = [b1 b2]T is the model parameter, and ϕt = [Ut−1 Ut−2]
T

is the regressor at time t .
Initially we construct a 95% confidence region for θ∗

= [b∗

1 b∗

2]
T

based on n = 25 data points, namely: (Yt , ϕt) = (Yt , [Ut−1 Ut−2]
T),

t = 1, . . . , 25.
We compute the shaping matrix

R25 =
1
25

25
t=1


Ut−1
Ut−2


[Ut−1 Ut−2] ,

and find a factor R
1
2
25 such that R

1
2
25R

1
2 T
25 = R25. Then, we compute the

reference sum

S0(θ) = R
−

1
2

25
1
25

25
t=1


Ut−1
Ut−2


(Yt − b1Ut−1 − b2Ut−2),

and, usingm = 100 and q = 5, we compute the 99 sign-perturbed
sums, i = 1, . . . , 99,

Si(θ) = R
−

1
2

25
1
25

25
t=1

αi,t


Ut−1
Ut−2


(Yt − b1Ut−1 − b2Ut−2),

where {αi,t} are i.i.d. randomsigns. The confidence region is formed
by those θ ’s for which at least 5 of the ∥Si(θ)∥2, i = 1, . . . , 99,
values are larger than ∥S0(θ)∥2. It follows from Theorem 1 that the
constructed confidence region contains the true parameter with
exact probability 1 −

5
100 = 95%.

The SPS confidence region is shown in Fig. 1 together with
the approximate confidence ellipsoid based on asymptotic system
identification theory (with the noise variance estimated as σ 2

=
1
23

25
t=1(Yt − ϕT

t θ̂n)
2).

It can be observed that the non-asymptotic SPS region is similar
in size and shape to the asymptotic confidence region, but it has the
advantage that it is guaranteed to contain the true parameter with
exact probability 95%.

Next, the number of data points was increased to n = 400,
still with q = 5 and m = 100, and the confidence region in
Fig. 2 was obtained. As can be seen, the SPS confidence region
shrinks around the true parameter as n increases in accordance
with Theorem 2 (observe the smaller range of the two axes in
Fig. 2). This is further illustrated in Fig. 3 where the number of data
points has been increased to 4000. When q = 5 and m = 100, we
can still observe a difference between the SPS confidence region
and the confidence ellipsoid based on the asymptotic theory, but
when q = 200, m = 4000 is used, there is very little difference
between the SPS confidence region and the confidence ellipsoid
based on the asymptotic theory demonstrating the convergence
result established in Theorem 3.
Fig. 1. 95% confidence regions, n = 25, m = 100.

Fig. 2. 95% confidence regions, n = 400,m = 100.

Fig. 3. 95% confidence regions, n = 4000,m = 100 andm = 4000.

5. Summary and conclusion

In this paper we have investigated the asymptotic properties
of the SPS method, which constructs confidence regions for the
parameters of linear regression models. It was shown that SPS is
strongly consistent in the sense that its confidence regions become



E. Weyer et al. / Automatica 82 (2017) 287–294 291
smaller and smaller as the number of data points increases, and
any parameter value different from θ∗ will eventually be excluded.
Moreover, as both the number of data points and the number of
sign-perturbed sums tend to infinity, the confidence regions are
included in the confidence ellipsoids from classical system identi-
fication theory when the noise variance is slightly increased. This
shows that, in addition to its attractive finite sample properties,
SPS has also very desirable asymptotic properties.
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Appendix A. Proof of Theorem 2: strong consistency

We will prove that, for any ε > 0, there is an n such that
∥S0(θ)∥2 becomes the largest element in the ordering for all θ that
are outside the ball Bε(θ∗), so that all these θ ’s are excluded from
the confidence region as n → ∞.

Introduce the notations

ψn ,
1
n

n
t=1

ϕtNt ,

γi,n ,
1
n

n
t=1

αi,t ϕtNt , (A.1)

Γi,n ,
1
n

n
t=1

αi,t ϕtϕ
T
t . (A.2)

We prove that ψn, γi,n, and Γi,n are almost surely vanishing as
n → ∞.

The almost sure convergence to zero of ψn follows from a
component-wise application of the Kolmogorov’s strong law of
large numbers (Theorem 8 in Appendix D). Indeed, by using the
Cauchy–Schwarz inequality as well as A4 and A5, we have (ϕt,k is
the kth component of ϕt )
∞
t=1

E[ϕ2
t,kN

2
t ]

t2
≤

∞
t=1

∥ϕt∥
2

t
E[N2

t ]

t

≤

 ∞
t=1

∥ϕt∥
4

t2

 ∞
t=1

(E[N2
t ])

2

t2
< ∞,

which shows that Kolmogorov’s condition is satisfied. Therefore,
ψn

a.s.
−→ 0, as n → ∞. The almost sure convergence to zero of

γi,n is proven similarly since the variance of αi,t ϕtNt is the same as
the variance of ϕtNt and, hence, γi,n

a.s.
−→ 0, as n → ∞. The result

Γi,n
a.s.

−→ 0, as n → ∞, is obtained by applying the Kolmogorov’s
strong law of large numbers to each element of the matrix and by
noting that the Kolmogorov’s condition holds in view of A4 since

∞
t=1

E[α2
i,t [ϕtϕ

T
t ]

2
j,k]

t2
=

∞
t=1

ϕ2
t,jϕ

2
t,k

t2
≤

∞
t=1

∥ϕt∥
4

t2
< ∞.
Based on these convergence results, we can now make a compari-
son between ∥S0(θ)∥2 and ∥Si(θ)∥2, i = 1, . . . ,m − 1. Note that

S0(θ) = R
−

1
2

n
1
n

n
t=1

ϕt(Yt − ϕT
t θ)

= R
1
2 T
n θ̃ + R

−
1
2

n ψn,

where θ̃ , θ∗
− θ and, for i = 1, . . . ,m − 1,

Si(θ) = R
−

1
2

n
1
n

n
t=1

αi,tϕt(Yt − ϕT
t θ)

= R
−

1
2

n Γi,nθ̃ + R
−

1
2

n γi,n.

Based on the above expressions, for any θ ∉ Bε(θ∗), i.e., for any θ
such that ∥θ̃∥ > ε, we have

∥S0(θ)∥2
− ∥Si(θ)∥2

= θ̃TRnθ̃ + ψT
nR

−1
n ψn + 2ψT

n θ̃

− θ̃TΓ T
i,nR

−1
n Γi,nθ̃ − γ T

i,nR
−1
n γi,n − 2γ T

i,nR
−1
n Γi,nθ̃

= θ̃T

Rn − Γ T

i,nR
−1
n Γi,n


θ̃ + 2


ψT

n − γ T
i,nR

−1
n Γi,n


θ̃

+

ψT

nR
−1
n ψn − γ T

i,nR
−1
n γi,n


≥ ∥θ̃∥2λmin


Rn − Γ T

i,nR
−1
n Γi,n


− 2∥θ̃∥ · ∥ψT

n − γ T
i,nR

−1
n Γi,n∥

∥θ̃∥

ε

− |ψT
nR

−1
n ψn − γ T

i,nR
−1
n γi,n|

≥ ∥θ̃∥2

λmin


Rn − Γ T

i,nR
−1
n Γi,n


− 2

∥ψT
n − γ T

i,nR
−1
n Γi,n∥

ε


− |ψT

nR
−1
n ψn − γ T

i,nR
−1
n γi,n|.

Since ψn, γi,n, and Γi,n asymptotically vanish (a.s.), and
lim infn→∞ λmin(Rn) = λ̄ > 0 (Assumption A3), we obtain
that there exists (a.s.) an ni such that, for any θ ∉ Bε(θ∗),
∥S0(θ)∥2

− ∥Si(θ)∥2 becomes positive from that ni on. Hence, by
the construction of Θn, we have that Θn ⊆ Bε(θ∗), for all n ≥

max i∈{1,...,m−1} ni. �

Appendix B. Proof of Theorem 3: asymptotic shape

We first give a characterisation of an outer approximation of
the SPS confidence region (cf. Eq. (B.3)). Then, we show that this
outer approximation can be interpreted (as n → ∞) as the set
of θ ’s for which n∥S0(θ)∥2 is smaller than the qmth largest value
of m independently drawn χ2 distributed random variables (a
consequence of Lemma 1), and, finally, we show that as m →

∞ this set is included in a confidence ellipsoid obtained from
asymptotic system identification theory.

Let Pi(θ) = n · ∥Si(θ)∥2, i = 0, . . . ,m − 1. Hence,

P0(θ) =
√
n(θ −θn)TRn

√
n(θ −θn),

and, for i = 1, . . . ,m − 1,

Pi(θ) = (θ∗
− θ)T

√
nΓi,nR−1

n

√
nΓi,n(θ

∗
− θ)

+
√
nγ T

i,nR
−1
n

√
nγi,n + 2

√
nγ T

i,nR
−1
n

√
nΓi,n(θ

∗
− θ),

where γi,n and Γi,n are given by (A.1) and (A.2).
Let P̄(θ) = [P1(θ) · · · Pm−1(θ)]

T. The SPS confidence set is
contained in the set of θ ’s for which

P0(θ)
qm
≤ P̄(θ),
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where P0(θ)
qm
≤ P̄(θ) means that P0(θ) is less than or equal to qm

or more of the elements in the vector on the right-hand side. P̄(θ)
can be written as

P̄(θ) = s1(θ)+ s2 + s3(θ),

where s1(θ) = [s1,1(θ) · · · s1,m−1(θ)]
T, s2 = [s2,1 · · · s2,m−1]

T and
s3(θ) = [s3,1(θ) · · · s3,m−1(θ)]

T, and, for i = 1, . . . ,m − 1,

s1,i(θ) = (θ∗
− θ)T

√
nΓi,nR−1

n

√
nΓi,n(θ

∗
− θ),

s2,i =
√
nγ T

i,nR
−1
n

√
nγi,n,

s3,i(θ) = 2
√
nγ T

i,nR
−1
n

√
nΓi,n(θ

∗
− θ).

Furthermore, let

s̃1,i =
√
nΓi,nR−1

n

√
nΓi,n,

s̃3,i = 2
√
nγ T

i,nR
−1
n

√
nΓi,n,

and let s̃1 = [∥s̃1,1∥ · · · ∥s̃1,m−1∥]
T and s̃3 = [∥s̃3,1∥ · · · ∥s̃3,m−1∥]

T.
The confidence set can be written asΘn,m = Θn,m ∩ Θn,m

=


θ : P0(θ)

qm
≤ P̄(θ) = s1(θ)+ s2 + s3(θ)


∩ Θn,m

⊆


θ : P0(θ)

qm
≤ ∥θ∗

− θ∥2s̃1 + s2 + ∥θ∗
− θ∥s̃3


∩ Θn,m. (B.1)

As we are taking the intersection with Θn,m, we can restrict the
considered values of θ in the first set of (B.1) toΘn,m thus obtaining
the outer bound

Θn,m ⊆


θ : P0(θ)

qm
≤ sup

θ∈Θn,m

∥θ∗
− θ∥2s̃1

+ s2 + sup
θ∈Θn,m

∥θ∗
− θ∥s̃3


.

Letµn,mσ
2 be the value of the qmth largest entry among them− 1

entries of the vector

sup
θ∈Θn,m

∥θ∗
− θ∥2s̃1 + s2 + sup

θ∈Θn,m

∥θ∗
− θ∥s̃3 (B.2)

Hence, Θn,m is included in a set characterised byΘn,m ⊆

θ : P0(θ) ≤ µn,mσ

2 . (B.3)

or, equivalently,

Θn,m ⊆


θ : (θ −θn)TRn(θ −θn) ≤

µσ 2

n
+
(µn,m − µ)σ 2

n


,

where Fχ2(µ) = p and Fχ2 is the cumulative distribution function
of the χ2 distribution with d degrees of freedom. Let εn,m =

(µn,m − µ)σ 2. In order to prove the theorem, we must show that
limm→∞ limn→∞µn,m = µ a.s.

The next lemma characterises the convergence in distribution
of (B.2) as n → ∞.

Lemma 1. For a fixed m,

sup
θ∈Θn,m

∥θ∗
− θ∥2s̃1 + s2 + sup

θ∈Θn,m

∥θ∗
− θ∥s̃3

d
→ σ 2

· χ2
m−1

as n → ∞, where χ2
m−1 is a vector of m − 1 independent χ2 dis-

tributed random variables with d degrees of freedom.

Proof. See Appendix C.
Based on Lemma 1, we can argue as follows to conclude the

proof of Theorem 3. From Lemma 1 the expression in (B.2) (divided
by σ 2) converges in distribution as n → ∞ to a vector of m − 1
independent χ2 distributed variables. The function selecting the
qmth largest element in a vector is a continuous function, andhence
by Lemma 4 µm , limn→∞ µn,m has the same distribution as the
qmth largest element ofm−1 independent χ2 distributed random
variables. We next show that µm converges a.s. to µ as m → ∞,
and this concludes the proof.

Givenm−1 values x1, . . . , xm−1 extracted fromm−1 indepen-
dent χ2 distributed random variables with d degrees of freedom,
consider the following empirical estimate for the cumulative χ2

distribution function

Fm(z) =
1

m − 1

m−1
i=1

I(xi ≤ z),

where I is the indicator function. From the Glivenko–Cantelli The-
orem (Theorem 6 in Appendix D), we have

sup
z

|Fm(z)− Fχ2(z)| → 0 a.s. asm → ∞. (B.4)

By construction,Fm(µm) = 1 −
qm−1
m−1 = pm → p, and Fχ2(µ) = p.

Since Fχ2 is continuous and strictly monotonically increasing, in
view of (B.4) this implies that limm→∞µm = µ almost surely. �

Appendix C. Proof of Lemma 1

We first present two technical lemmas which are needed in the
proof of Lemma 1.

Lemma 2.
R

−
1
2

n
√
nγ1,n

R
−

1
2

n
√
nγ2,n
...

R
−

1
2

n
√
nγm,n


d

→ N (0, σ 2Imd),

where N denotes the normal distribution.

Proof. We only prove the result for m = 2. The case m > 2
follows with obvious modifications. The main tools in the proof
are the Cramer–Wold Theorem (Theorem 4 in Appendix D) and
the Central limit theorem (Theorem 7 in Appendix D) using the
Lyapunov condition (D.1).

We first show that, for any 2d-vector [aT1 aT2] ≠ 0,

[aT1 aT2]

√
nR

−
1
2

n γ1,n
√
nR

−
1
2

n γ2,n

 d
→ N (0, (aT1a1 + aT2a2)σ

2).

Note that

[aT1 aT2]

√
nR

−
1
2

n γ1,n
√
nR

−
1
2

n γ2,n

 = [aT1 aT2]
1

√
n

n
t=1

α1,tR
−

1
2

n ϕtNt

α2,tR
−

1
2

n ϕtNt

 ,
and let ξt = [aT1 aT2]


α1,tR

−
1
2

n ϕtNt

α2,tR
−

1
2

n ϕtNt


. We have E[ξt ] = 0 and

D2
n =

n
t=1

E[ξ 2t ]

=

n
t=1

E


aT1R

−
1
2

n ϕtα1,t + aT2R
−

1
2

n ϕtα2,t

2


E[N2
t ]
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=

n
t=1


aT1R

−
1
2

n ϕt

2

+


aT2R

−
1
2

n ϕt

2

σ 2

= n(aT1a1 + aT2a2)σ
2, (C.1)

and
n

t=1

E[ξ 4t ] =

n
t=1

E


aT1R

−
1
2

n ϕtα1,t + aT2R
−

1
2

n ϕtα2,t

4


E[N4
t ]

=

n
t=1


aT1R

−
1
2

n ϕt

4

+ 6

aT1R

−
1
2

n ϕt

2 
aT2R

−
1
2

n ϕt

2

+


aT2R

−
1
2

n ϕt

4

ρ = o(n2),

that is, the last term multiplied by 1/n2 tends to zero, a fact due
to Assumption A6. Using (C.1), the Lyapunov condition (D.1) with
δ = 2 holds. Hence,

1
√
n

n
t=1


aT1R

−
1
2

n ϕtα1,tNt + aT2R
−

1
2

n ϕtα2,tNt


σ


aT1a1 + aT2a2

d
→ N (0, 1),

assuming a1 and a2 are not simultaneously null, and so

1
√
n

n
t=1

(aT1R
−

1
2

n ϕtα1,tNt + aT2R
−

1
2

n ϕtα2,tNt)

d
→ N (0, σ 2(aT1a1 + aT2a2)).

Now, from the Cramer–Wold theorem (Theorem 4 in Appendix D),
it follows that

1
√
n

n
t=1

α1,tR
−

1
2

n ϕtNt

α2,tR
−

1
2

n ϕtNt

 d
→ N


0, σ 2


I 0
0 I


,

from which the lemma immediately follows. �

Lemma 3. For a fixed m, each component of the terms supθ∈Θn,m

∥θ∗
−θ∥2s̃1 and supθ∈Θn,m ∥θ∗

−θ∥s̃3 converges to zero in probability
as n → ∞.

Proof. We consider supθ∈Θn,m ∥θ∗
− θ∥2s̃1 first. We need to show

that

P{ sup
θ∈Θn,m

∥θ∗
− θ∥2

· ∥s̃1,i∥ > ϵ} → 0 as n → ∞

for every ϵ > 0. Let βn = supθ∈Θn,m ∥θ∗
− θ∥2. Since

∥s̃1,i∥ ≤

 1
√
n

n
t=1

αi,tϕtϕ
T
t

 · ∥R−1
n ∥ ·

 1
√
n

n
t=1

αi,tϕtϕ
T
t

 ,
the result follows if

P


β1/3
n ·

 1
√
n

n
t=1

αi,tϕtϕ
T
t

 > ϵ1/3


→ 0, (C.2)

and

P{β1/3
n ·

R−1
n

 > ϵ1/3} → 0, (C.3)

as n → ∞. (C.3) follows from Theorem 2 and Assumption A3. Next
we show (C.2). From Chebyshev’s inequality we have

P

 1
√
n

n
t=1

αi,tϕtϕ
T
t

 > K


≤

E

 1
√
n

n
t=1
αi,tϕtϕ

T
t

2


K 2
.

On the other hand,

E

 1
√
n

n
t=1

αi,tϕtϕ
T
t


2


≤ traceE


1

√
n

n
t=1

αi,tϕtϕ
T
t


1

√
n

n
t=1

αi,tϕtϕ
T
t



= trace


1
n

n
t=1

ϕtϕ
T
t ϕtϕ

T
t


=

1
n

n
t=1

∥ϕt∥
4,

which is bounded by a constant C in viewof Assumption A6. Hence,
P{∥

1
√
n

n
t=1 αi,tϕtϕ

T
t ∥ > K} ≤ C/K 2, ∀n, which is an arbitrarily

small number provided K is large enough. (C.2) now easily follows
from Theorem 2 since it implies that P{β

1/3
n > ϵ1/3/K} → 0 as

n → 0.
We next investigate the term supθ∈Θn,m ∥θ∗

− θ∥s̃3,i. We have
∥s3,i∥ = ∥2 1

√
n

n
t=1 αi,tϕtϕ

T
t R

−1
n

1
√
n

n
t=1 αi,tϕtNt∥. The result

follows provided that

P


β1/6
n ·

 1
√
n

n
t=1

αi,tϕtϕ
T
t

 > ϵ1/3


→ 0, (C.4)

P{β1/6
n · ∥R−1

n ∥ > ϵ1/3} → 0, (C.5)

and

P


β1/6
n ·

 1
√
n

n
t=1

αi,tϕtNt

 > ϵ1/3


→ 0, (C.6)

as n → ∞. Results (C.4) and (C.5) are essentially the same as (C.2)
and (C.3). Result (C.6) can be established along the same lines as
(C.2) by noting that

E

 1
√
n

n
t=1

αi,tϕtNt


2
 =

1
n

n
t=1

∥ϕt∥
2σ 2,

which is bounded by Assumption A6. �

Proof of Lemma 1. By Lemmas 2 and 4 1
σ 2 s2 converges in distri-

bution to a vector of independent χ2 distributed random vari-
ables with d degrees of freedom. Lemma 1 now follows from
Slutsky’s Theorem (see Appendix D) since supθ∈Θn,m ∥θ∗

− θ∥2s̃1
and supθ∈Θn,m ∥θ∗

− θ∥s̃3 converge to zero in probability by
Lemma 3. �

Appendix D. Main theoretical tools of the proofs

Let Xn and X be random vectors in Rs, and let
d

→ denote
convergence in distribution. The following results can be found in,
e.g., van der Vaart (1998) or Shiryaev (1995).

Theorem 4 (Cramer–Wold Theorem). Xn
d

→ X if and only if aTXn
d

→

aTX ∀a ∈ Rs.

Lemma 4. Let f be a continuous function from Rs to Rl. If Xn
d

→ X,
then f (Xn)

d
→ f (X).

The next theorem follows from Lemma 4.

Theorem 5 (Slutsky’s Theorem). Let f be a continuous function from
Rs+k to Rl. If Xn

d
→ X and Yn = [Yn,1 . . . Yn,k]

T converges in proba-

bility to a constant vector c = [c1 . . . ck]T, then f (Xn, Yn)
d

→ f (X, c).
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Theorem 6 (Glivenko–Cantelli Theorem). Let x1, . . . , xn be i.i.d.
random variables with cumulative distribution function
F(z) = P{x1 ≤ z}. Let Fn(z) be the empirical estimate of F(z):
Fn(z) =

1
n

n
t=1 I(xt ≤ z), where I is the indicator function. Then,

lim
n→∞

sup
z∈R

|F(z)− Fn(z)| = 0 a.s..

Theorem 7 (Central Limit Theorem). Let ξ1, ξ2, . . . be independent
random variables with finite second moments. Let mt = E[ξt ], σ 2

t =

E[(ξt − mt)
2
] > 0, Sn =

n
t=1 ξt , D

2
n =

n
t=1 σ

2
t and let Ft(x)

be the cumulative distribution function of ξt . If, for every ϵ > 0, the
following Lyapunov condition is satisfied for a δ > 0,

1

D2+δ
n

n
t=1

E[|ξt − mt |
2+δ

] → 0, as n → ∞, (D.1)

then
Sn − E[Sn]

Dn

d
→ G(0, 1).

Theorem 8 (Strong Law of Large Numbers). Let ξ1, ξ2, . . . be a se-
quence of independent random variables with finite second moments,
and let Sn =

n
t=1 ξt . Assume that

∞
t=1

E[(ξt − E[ξt ])
2
]

t2
< ∞,

then

lim
n→∞

Sn − E[Sn]
n

= 0. (a.s.)
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