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Abstract Building confidence regions for regression models is of high importance,
for example, they can be used for uncertainty quantification and are also funda-
mental for robust optimization. In practice, these regions are often computed from
the asymptotic distributions, which however only lead to heuristic confidence sets.
Sign-Perturbed Sums (SPS) is a resampling method which can construct exact, non-
asymptotic, distribution-free confidence regions under very mild statistical assump-
tions. In its standard form, the SPS regions are built around the least-squares esti-
mate of linear regression problems, and have favorable properties, such as they are
star convex, strongly consistent, and have efficient ellipsoidal outer-approximations.
In this paper, we extend the SPS method to regularized estimates, particularly, we
present variants of SPS for ridge regression, LASSO and elastic net regularization.

1 Introduction

Estimating models based on noisy measurements is a fundamental problem for
many scientific, engineering and economic applications. A very important issue in
practice is to quantify the uncertainty of the obtained models. This is often done
by building confidence regions for the models. While these regions are frequently
built using the limiting distribution of the used point-estimate [6], such regions are
not guaranteed for finite samples, and can only be seen as heuristics. It is of high
importance to construct confidence regions with non-asymptotic guarantees, using
minimal statistical assumptions. Resampling methods, such as bootstrap and Monte
Carlo approaches, typically use some regularity of the noise to build such regions.

Sign-Perturbed Sums (SPS) is a recently developed resampling method with fa-
vorable properties. SPS can construct exact, distribution-free confidence regions for
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finite samples [2, 7]. Its standard form constructs (star convex, strongly consistent)
confidence sets around the least-squares estimate of linear regression problems.

Regularization is an important tool in regression which can help, for example, to
handle ill-posed and ill-conditioned problems, reduce over-fitting, enforce sparsity,
and in general to control the shape and smoothness of the regression function. The
paper extends SPS to various regularized linear regression problems, particularly, to
ridge regression (Tikhonov regularization), LASSO and elastic net regularization.

2 Preliminaries: Asymptotic Confidence Ellipsoids

We start by recalling the standard “textbook” approach to build (asymptotic) confi-
dence ellipsoids around the least-squares estimate of linear regression problems.

Assume we are given a data sample, Dn
.
= {(ϕ1,y1), . . . ,(ϕn,yn)}, with

yt
.
= ϕ

T
t θ
∗+ εt , for t = 1, . . . ,n (1)

where yt is the output, ϕt is the input or regressor and εt is the (non-observable) noise
for measurement t. We aim at estimating the (constant) “true” parameter, θ ∗ ∈ Rd .
We assume that {ϕt} ⊂ Rd are deterministic and the noise {εt} is an independent
sequence of random variables, each having a symmetric distribution about zero, that
is the distribution of εt is the same as that of −εt . Finally, for simplicity, we assume
that the regressor matrix, Φ

.
= [ϕ1, . . . ,ϕn ]

T, is skinny (n > d) and full rank.
One of the standard estimators is the well-known least-squares (LS) method

θ̂n
.
= argmin

θ∈Rd
V (θ |Dn) = argmin

θ∈Rd

1
2
‖y−Φθ ‖2

2, (2)

where y .
= [y1, . . . ,yn]

T; θ̂n, can be obtained from the normal equation, that is

∇θ V (θ̂n |Dn) = Φ
T

Φ θ̂n−Φ
Ty = 0, (3)

which has a unique analyitical solution, famously given by θ̂n = (ΦTΦ)−1(ΦTy).
A crucial question is that how can we quantify the uncertainty of the so obtained

estimate? This question can be answered, e.g., by constructing confidence regions
around the point-estimate. More precisely, given a confidence probability p∈ (0,1),
we aim at finding a region, Θ̂Dn,p around θ̂n, such that P

(
θ ∗ ∈ Θ̂Dn,p

)
≥ p.

The standard method to build such regions is to use the asymptotic distribution of
the estimate [6]. It is known that the (scaled) error of LS is asymptotically Gaussian,

√
n(θ̂n−θ

∗)
d−→ N (0,σ2 R−1), as n→ ∞, (4)

where N (µ,Σ) is the (multivariate) Gaussian distribution with mean µ and co-
variance Σ . This property holds under various conditions, e.g., if the regressors
are bounded, there exits a positive definite matrix R as the limit of matrices Rn

.
=

1
n ΦT

n Φn , and {εt} are i.i.d. as well as E[εt ] = 0 and E[ε2
t ] = σ2, with 0 < σ2 < ∞.

Using the limiting distribution, a (heuristic) confidence ellipsoid can be built by
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Θ̃n,p
.
=

{
θ ∈ Rd : (θ − θ̂n)

TRn (θ − θ̂n) ≤
q σ̂2

n

n

}
, (5)

where p=Fχ2(d)(q), with Fχ2(d) being the CDF of the χ2 distribution with d degrees
of freedom; and σ̂2

n is an (unbiased) estimate of the noise variance, that is

σ̂
2
n

.
=

1
n−d

n

∑
t=1

(yt −ϕ
T
t θ̂n)

2. (6)

Then, we approximately have P(θ ∗ ∈ Θ̃n,p ) ≈ p (and, obviously, θ̂n ∈ Θ̃n,p).
However, the confidence regions constructed using the asymptotic distribution

are not guaranteed for finite samples, and are typically imprecise if the sample size
is small. Another drawback of the asymptotic approach is that it presupposes the
existence of a limiting distribution, which cannot be guaranteed in certain cases.

3 Sign-Perturbed Sums: Non-Asymptotic Confidence Regions

Now, we overview the Sign-Perturbed Sums (SPS) method [2, 7] that can construct
exact, non-asymptotic, distribution-free confidence regions around the LS estimate.

As first glance, SPS can be seen as a hypothesis testing method. It tests the null
hypothesis θ = θ ∗, against the alternative hypothesis θ 6= θ ∗. SPS is based on the
idea that if θ = θ ∗, then (1) we can compute the exact realization of the noise vec-
tor, ε = (ε1, . . . ,εn)

T, by “inverting” the system, and (2) using some regularity of
the noise (e.g., symmetry), alternative noise realizations can be generated, leading
to alternative samples and estimates, which behave “similarly” (in the statistical
sense) to the original ones. On the other hand, if θ 6= θ ∗, then the residuals will be
biased and the alternative samples and estimates based on them will behave statis-
tically differently than the original ones. SPS applies a rank-test to decide whether
the perturbed objects are similar to the original ones. Unlike other resampling based
approahces, SPS avoids actually constructing the alternative samples and fitting sur-
rogate models to them, as it directly perturbs the gradient of the objective function.

The principal building blocks of SPS are the following evaluation functions,

Zi(θ)
.
= ‖Ψ

1/2
Φ

TGi
(
y−Φθ

)
‖2

2, (7)

for i ∈ {0,1, . . . ,m− 1}, where Ψ = (ΦTΦ)−1, m > 0 is a user-chosen integer,
G0

.
= I, the identity matrix, and for i 6= 0, Gi

.
= diag(αi,1, . . . ,αi,n); {αi, j} are i.i.d.

Rademacher variables1; and diag(·) builds a diagonal matrix from its argument.
Notice that, apart from an (optional) linear transformation, Ψ

1/2, whose role is to
make a covariance correction, Z0(θ) is basically the norm of the (negative) gradient
of the least-squares objective. The difference between Z0(θ) and Zi(θ), i 6= 0, is that
in latter functions the signs of the residuals (y−Φθ) are perturbed in the gradient.

1 Random variables which take values +1 and −1 with probability 1/2 each.
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In case θ = θ ∗, the residuals are the true noises, y−Φθ ∗ = ε , and we know
from the symmetry assumption that for all i, ε and Gi ε have the same distribution,
where Gi is a diagonal matrix containing random signs as defined above. Then,

Z0(θ
∗) = ‖Ψ 1/2

Φ
T

ε ‖2
2

d
= ‖Ψ 1/2

Φ
TGi ε ‖2

2 = Zi(θ
∗), (8)

for i = 1, . . . ,m−1, where “ d
=” denotes equality in distribution. Nevertheless, vari-

ables {Zi(θ
∗)} are of course not independent. On the other hand, it can be proved

[2] that they are conditionally i.i.d., conditioned on the σ -algebra generated by
{|εt |}. Consequently, they are also exchangeable and hence each ordering2 of them,
Zi0(θ

∗)≺ ·· · ≺ Zim−1(θ
∗), has the same probability, namely, 1/m!.

If however, θ 6= θ ∗, then this exchangeability argument does not hold, moreover,
Z0(θ) will eventually dominate {Zi(θ)}i 6=0 with high probability as ‖θ −θ ∗‖→ ∞.

To make these ideas more precise, let us define the normalized rank of Z0(θ) as

R(θ)
.
=

1
m

[
1+

m−1

∑
i=1

I(Z0(θ)≺ Zi(θ))

]
, (9)

where I(·) is an indicator (its value is 1 if its argument is true and 0 otherwise).
Assume that the target confidence probability can be written as p = 1− q/m

where 0 < q < m are user-chosen integers. Then, SPS accepts the null hypothesis,
θ = θ ∗, if R(θ) ≤ p, and rejects it if R(θ) > p. As m and q are free-parameters,
they are under our control, hence any (rational) probability can be achieved.

Based on these observations, the SPS confidence regions can be defined as

Θ̂n,p
.
=
{

θ ∈ Rd : R(θ)≤ p
}
. (10)

It can be proved [2] that these regions have exact confidence P
(

θ ∗ ∈ Θ̂n,p
)
= p.

Note that the exact confidence of the regions is guaranteed for finite samples despite
no knowledge about the particular noise distributions is assumed, moreover, each
noise term may have a different distribution with arbitrarily large variance.

There are several important properties of SPS confidence regions [2, 7]. For ex-
ample, (1) they are star convex with the LS estimate as a star center; (2) they are
uniformly strongly consistent; (3) they have asymptotically the same size and shape
as the classical confidence ellipsoids; finally (4) they have ellipsoidal outer approx-
imation that can be efficiently computed via semidefinite programming problems.

SPS has several generalizations, for example, it can be extended to general
stochastic linear (dynamical) systems, even if they are operating in closed-loop [3],
and to various non-linear dynamical systems, such as GARCH models [1].

Finally, we note that working with symmetric noises is not crucial for SPS as
the theory can be extended to other noise distributions, as long as we know a group
of transformations that leave the (joint) distribution of the noises unchanged. For
example, one can assume that the noises are exchangeable and use random permu-
tation matrices as {Gi}, see [5]. We refer to these generalized variants as (G)SPS.

2 Relation “≺” is a total order which we get from “<” by random tie-breaking, see [2].
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4 Non-Asymptotic Confidence Sets for Regularized Estimates

In this section we are going to extend the theory of (G)SPS, in order to construct
non-asymptotic, distribution-free confidence regions around regularized estimates.

First, we consider ridge regression (RR) which has the objective function

VR(θ )
.
=

1
2
‖y−Φθ ‖2

2 +
λ

2
‖θ ‖2

2 , (11)

for a λ ≥ 0 hyper-parameter. It is well-known that RR can be reformulated as LS,

Φ̃ =

[
Φ
√

λ I

]
, and ỹ =

[
y
0

]
, (12)

where I is the identity matrix, after which we have VR(θ ) = 1/2‖ ỹ− Φ̃θ ‖2.
Then, one might be tempted to apply standard SPS to the obtained (ordinary)

LS formulation. However, we should proceed with caution, as the new problem has
some auxiliary output terms, the zero part of ỹ, to which there are no real noise terms
in the original problem. Therefore, the last d terms of the residual vector, ỹ− Φ̃θ ,
should not be perturbed, as the distributional invariance was only assumed for the
original noise vector. Consequently, the {Gi} matrices should be extended by

G̃i
.
=

[
Gi 0
0 I

]
, (13)

for i = 1, . . . ,m−1. Then, using an analogue of (7) to the new LS system with {G̃i}
perturbations, we arrive at the (G)SPS evaluation function for ridge regression,

Zi(θ)
.
=
∥∥Ψ

1/2
R

[
Φ

TGi (y−Φθ)−λθ
]∥∥2

2, (14)

where ΨR = (ΦTΦ + λ I)−1(ΦTΦ)(ΦTΦ + λ I)−1 is a correction term from the
covariance of RR. Based on this evaluation function, exact confidence regions can
be built around the RR estimate, using the same steps as we had for standard SPS.

Now, let us consider LASSO (least absolute shrinkage and selection operator)
which applies L1 regularization to enforce sparsity. It has the objective function

VL(θ )
.
=

1
2
‖y−Φθ ‖2

2 + λ ‖θ ‖1 , (15)

for λ ≥ 0. This objective is no more quadratic and it cannot be traced back to LS.
However, the underlying idea of SPS, i.e., to perturb the residuals in the (negative)
gradient of the objective, can still be applied. A (sub-) gradient3 of (15) is

∇θVL(θ ) = Φ
T

Φ θ −Φ
Ty+λ sign(θ), (16)

where the sign function is understood component-wise.

3 For our purposes, one of the subgradients is sufficient, thus we do not treat ∇θV set-valued.
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Then, we can proceed in the same way as before and perturb the residuals in (16)
with {Gi}, leading to the (G)SPS evaluation function for LASSO,

Zi(θ)
.
=
∥∥Ψ

1/2
L

[
Φ

TGi (y−Φθ)−λ sign(θ)
]∥∥2

2, (17)

where ΨL is an (optional) correction term, e.g., using the (asymptotic) results of [4],
we may use ΨL = (ΦTΦ)−1. The correction matrix can be interpreted as the square-
root of the (estimated) covariance of LASSO (modulo the variance of the noise, as
multiplying each Zi with the same positive scalar does not affect their ordering).

The last method that we discuss is the elastic net regularization with objective

VE(θ )
.
=

1
2
‖y−Φθ ‖2

2 + λ1 ‖θ ‖1 +
λ2

2
‖θ ‖2

2 , (18)

were λ1,λ2 ≥ 0 are hyper-parameters. As the objective is the combination of the
ridge regression and LASSO objectives, it can be handled using similar ideas. That
is we can compute a subgradient of the objective and perturb the residuals based on
the transformations {Gi} which leave the (joint) distribution of the true noise terms
invariant. Then, the (G)SPS evaluation function for elastic net regularization is

Zi(θ)
.
=
∥∥Ψ

1/2
E

[
Φ

TGi (y−Φθ)−λ1 sign(θ)−λ2 θ
]∥∥2

2, (19)

where ΨE can again be an (optional) covariance estimate for the elastic net solution.
The exact confidence of the constructed regions easily follows from the related

results for SPS. We leave the investigation of their other properties for further work.

Acknowledgements This research was partially supported by the National Research, Develop-
ment and Innovation Office (NKFIH), grant numbers ED 18-2-2018-0006 and KH 17 125698,
and by the János Bolyai Research Fellowship of the Hung. Academy of Sciences, BO/00217/16/6.

References
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