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Abstract— The objective of the paper is to revisit a key
mathematical technology within the theory of stochastic ap-
proximation in a Markovian framework, elaborated in detail in
Benveniste et al. (1990): the existence, uniqueness and Lipschitz-
continuity of the solutions of a parameter-dependent Poisson
equation. The starting point of our investigation is a relatively
new, elegant stability theory for Markov processes developed by
Hairer and Mattingly (2011). The paper provides a transparent
analysis of parameter-dependent Poisson equations with conve-
nient conditions. The application of our results for the ODE
analysis of stochastic approximation in a Markovian framework
is the subject of a forthcoming paper.

I. INTRODUCTION

A beautiful area of systems and control theory is recursive
identification, and stochastic adaptive control of stochastic
systems. In an abstract mathematical framework [2] [9] the
key problem is to solve a non-linear algebraic equation

EH(Xn(θ), θ) = 0, (1)

where θ ∈ Rk is an unknown, vector-valued parameter of a
physical plant or controller, (Xn(θ)), −∞ < n < +∞ is a
strictly stationary stochastic process, representing a physical
signal affected by θ, and H(X, θ) is a computable function.
The same mathematical framework is applied in other fields
such as adaptive signal processing and machine learning.

Our objective is to find the root of (1), denoted by θ∗, via
a recursive algorithm based on computable approximations
of H(Xn(θ), θ). In the case when H(Xn(θ), θ) = h(θ)+en,
where (en) is an i.i.d. process, or a martingale difference se-
quence, we get a classical stochastic approximation process.

An early version of the above problem is presented in
the celebrated paper by Ljung [8], in which (Xn(θ)) was
assumed to be defined via a linear stochastic system driven
by a weakly dependent process.

A renewed interest in recursive estimation in a Markovian
framework was sparked by the excellent book of Benveniste,
Métivier and Priouret [2] elaborating an extensive mathemat-
ical technology for the analysis of these processes. A central
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the “Lendület” grant LP 2015-6 of the Hungarian Academy of Sciences.
B. Gerencsér was also supported by the NKFIH grant PD 121107.
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tool in this book is a complex set of results concerning the
parameter-dependent Poisson equation. This is carried out by
a specific stability theory for a class of Markov processes,
which is off the track of usual methodologies, e.g., Athreya
and Ney [1], Nummelin [11], Meyn and Tweedie [10].

The enormous practical value of the estimation problem in
a Markovian framework motivates our interest to revisit the
theory of [2], and see if their analysis can be simplified or
even extended in the light of recent progress in the theory of
Markov processes. The starting point of our investigation is a
relatively new, elegant stability theory for Markov processes
developed by Hairer and Mattingly [5].

The focus of the present paper is the study of the
parameter-dependent Poisson equation formulated as

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (2)

where Pθ is the probability transition kernel of the Markov
process (Xn(θ)), with P ∗θ uθ(·) denoting the action of Pθ on
the unknown function uθ(·), and fθ(·) is an a priori given
function defined on the state-space of the process, finally hθ
denotes the mean value of fθ(·) under the assumed unique
invariant measure, say µ∗θ , corresponding to Pθ.

The Poisson equation is a simple and effective tool to
study additive functionals on Markov-processes of the form

N∑
n=1

(
H(Xn(θ), θ)− Eµ∗θH(Xn(θ), θ)

)
(3)

via martingale techniques. Proving the Lipschitz continuity
of uθ(x) w.r.t. θ, and providing useful upper bounds for
the Lipschitz constants are vital technical tools for an ODE
analysis proposed in [2, Part II, Chapter 2]. The analysis
of the Poisson equation takes up more than half of the
efforts in proving the basic convergence results in [2], and
the verification of their conditions is far from being trivial.

The objective of our project is to revisit the relevant
mathematical technologies and outline a more transparent
and flexible analysis within the setup of [5]. The present
paper is devoted to the first half of this project, the analysis
of a parameter-dependent Poisson equation.

The application of our results for stochastic approximation
within a Markovian framework is the subject of a forth-
coming paper, in which a combination of the ODE analysis
developed in [2] and [4] is to be extended using the results
of the current paper. In the end we get the expected rate of
convergence for the moments of the estimation error under
a convenient set of conditions.

The significance of the topic of the paper is reinforced by
the current intense interest in the minimization of functions



computed via MCMC [3]. To complement the above histor-
ical perspective we should note that the problem goes back
to [12], providing results for finite state Markov chains. The
extension of these results to more general state spaces is far
from trivial, posing the challenge to choose an appropriate
distance of measures.

The structure of the paper is as follows: in Section II we
provide a brief introduction to the stability theory for Markov
chains developed in [5]. The main results of the paper are
stated in Section III, culminating in Theorem 2, proving
the Lipschitz continuity of the solutions of a parameter-
dependent Poisson equation. These results are extended in
Section IV: the uniform drift condition, stated as Assumption
1, is significantly relaxed. Our primary objective is to provide
a clear, well-motivated presentation of the new concepts and
results accompanied by a bird’s-eye view on the proofs.

II. A BRIEF SUMMARY OF
A NEW STABILITY THEORY FOR MARKOV CHAINS

Let (X,A) be a measurable space and Θ ⊆ Rk be a
domain (i.e., a connected open set). Consider a class of
Markov transition kernels Pθ(x,A), that is for each θ ∈ Θ,
x ∈ X, Pθ(x, ·) is a probability measure over X, and for
each A ∈ A, P·(·, A) is (x, θ)-measurable. Let (Xn(θ)),
n ≥ 0, be a Markov chain with transition kernel Pθ. For
any probability measure µ and measurable ϕ : X→ R define

(Pθµ)(A) =

∫
X

Pθ(x,A)µ(dx),

(P ∗θ ϕ)(x) =

∫
X

ϕ(y)Pθ(x,dy) = Eθ
[
ϕ(X1) | X0 = x

]
,

assuming the integral exists. The next condition is motivated
by [5], stated there for single Markov chains.

Assumption 1 (Uniform Drift Condition for Pθ): There
exists a measurable function V : X→ [0,∞) and constants
γ ∈ (0, 1) and K ≥ 0 such that

(P ∗θ V )(x) ≤ γV (x) +K, (4)

for all x ∈ X and θ ∈ Θ. Note that V (x) is not θ-dependent.

Remark 1: The drift condition implies that for any prob-
ability measure µ such that µ(V ) :=

∫
X
V (x)µ(dx) <∞,

Pθµ(V ) ≤ γµ(V ) +K. (5)

Indeed, integrating (4) with respect to µ we get (5).
As an example, consider a family of linear stochastic

systems with state vectors Xθ,n:

Xθ,n+1 = AθXθ,n +BθUn,

where θ ∈ Θ, the matrix Aθ is stable for all θ ∈ Θ, and (Un)
is an i.i.d. sequence of random vectors such that E [Un] = 0
and E [UnU

>
n ] = S exists and is finite.

Setting V (x) = x>Qx, where Q is a common symmetric
positive definite matrix, it can be easily seen that

(P ∗θ V )(x) = x>A>θ QAθx+ tr(B>θ QBθS).

Thus, the drift condition in the present case is equivalent to
A>θ QAθ ≤ γ Q, with γ < 1, for all θ, in the sense of the
semi-definite ordering.

It may seem too restrictive to assume the existence of a
common quadratic Lyapunov function V for all θ. Inspired
by alternative conditions that are applicable for this class of
processes, Assumption 1 will be relaxed in Section IV.

The next condition is a natural extension of the cor-
responding assumption of [5] for a parametric family of
Markov chains, which itself is a modification of a standard
condition in the stability theory of Markov chains [10].

Assumption 2 (Local Minorization): Let R > 2K/(1−γ),
where γ and K are the constants from Assumption 1, and
set C = {x ∈ X : V (x) ≤ R}. There exist a probability
measure µ̄ on X and a constant ᾱ ∈ (0, 1) such that, for all
θ ∈ Θ, all x ∈ C, and all measurable A,

Pθ(x,A) ≥ ᾱµ̄(A).

Remark 2 (Interpretation of R): If there exists an invari-
ant measure µ∗θ such that

∫
X
V (x)µ∗θ(dx) < ∞, then

integrating both sides of inequality (4), we get∫
X

V (x)µ∗θ(dx) ≤ K

1− γ
. (6)

Thus, R in Assumption 2 exceeds twice the mean of V w.r.t.
any of the invariant measures.

We now introduce a weighted total variation distance be-
tween two probability measures µ1, µ2, where the weighting
is in the form 1+βV (·), where β > 0 for which a fine-tuned
choice will be needed for the results of [5] to hold.

Definition 1: Let µ1 and µ2 be two probability measures
on X. Then, define the weighted total variation distance as

ρβ(µ1, µ2) =

∫
X

(1 + βV (x))|µ1 − µ2|(dx),

where |µ1 − µ2| is the total variation measure of (µ1 − µ2).

An equivalent definition of ρβ can be given by introducing
the following norm in the space of R-valued functions on X:

Definition 2: For a measurable function ϕ : X→ R, set

‖ϕ‖β = sup
x

|ϕ(x)|
1 + βV (x)

. (7)

The linear space of functions such that ‖ϕ‖β < ∞ will
be denoted by LV . Note that LV is independent of β. An
equivalent definition of ρβ is:

ρβ(µ1, µ2) = sup
ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)(µ1 − µ2)(dx). (8)

Denoting by δx the Dirac measure at x, note that, for
x 6= y, it holds that ρβ(δx, δy) = 2 + βV (x) + βV (y). This
leads to the definition of the following metric on X:

dβ(x, y) =

{
2 + βV (x) + βV (y) if x 6= y,

0 if x = y.
(9)

This may seem to be an unusual metric, assigning a distance
at least 2 between any pair of distinct points, but it turns out



to be quite useful. Having a metric on X, we can introduce
a measure of oscillation for functions ϕ : X→ R.

Definition 3: For a measurable function ϕ : X→ R, set

|||ϕ|||β = sup
x 6=y

|ϕ(x)− ϕ(y)|
dβ(x, y)

. (10)

It is readily seen that |||ϕ|||β ≤ ‖ϕ‖β . Since |||ϕ|||β is
invariant w.r.t. translation by any constant c ∈ R we also
get |||ϕ|||β ≤ ‖ϕ + c‖β . Surprisingly, the infimum, and in
fact the minimum, of these upper bounds reproduces |||ϕ|||β
as stated in the following lemma proved in [5]:

Lemma 1: |||ϕ|||β = minc∈R ‖ϕ+ c‖β .

Definition 4: Let µ1, µ2 be two probability measures on
X. Then, we define the distance

σβ(µ1, µ2) = sup
ϕ:|||ϕ|||β≤1

∫
X

ϕ(x)(µ1 − µ2)(dx). (11)

A relatively simple corollary of Lemma 1 is the following:

Corollary 1: For probability measures µ1, µ2, we have

σβ(µ1, µ2) = ρβ(µ1, µ2). (12)

Remark 3: The metrics ρβ(µ1, µ2) and σβ(µ1, µ2) de-
pend only on (µ1 − µ2), therefore they can be expressed by
the univariate functions ρβ(η) and σβ(η) defined for signed
measures η with |η|(V ) <∞ and η(X) = 0 as

σβ(η) = sup
ϕ:|||ϕ|||β≤1

∫
X

ϕ(x)η(dx)

= sup
ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)η(dx)

=

∫
X

(1 + βV (x))|η|(dx). (13)

A fundamental result of [5, Theorem 3.1] is as follows:

Proposition 1: Under Assumptions 1 and 2, there exists
α ∈ (0, 1) and β > 0 such that for all θ and measurable ϕ,

|||P ∗θ ϕ|||β ≤ α|||ϕ|||β . (14)

In particular, one can choose β = ᾱ/(2K), and then choose
any α such that α > (1 − ᾱ/2) ∨ 2+β(Rγ+2K)

2+βR , where this
lower bound can be seen to be strictly less than 1.

Remark 4: Note that with the choice of α as given in
Proposition 1 it holds that 1 > α > γ. This indicates that the
contraction coefficient α is strictly larger than the contraction
coefficient γ postulated by the drift condition.

A corollary of Proposition 1 stated in [5, Theorem 1.3] is:

Proposition 2: Under Assumptions 1 and 2, there exists
α ∈ (0, 1) and β > 0, such that for all θ,

σβ(Pθµ1, Pθµ2) ≤ ασβ(µ1, µ2), (15)

for any pair of probability measures µ1, µ2 on X.

In what follows, α and β are chosen as indicated in
Proposition 1. Using standard arguments one can easily show
the following proposition, also stated in [5] as Theorem 3.2:

Proposition 3: Under Assumptions 1 and 2 for all θ
there is a unique probability measure µ∗θ on X such that∫
X
V dµ∗θ <∞ and Pθµ∗θ = µ∗θ.

Similar results to those of Propositions 2 and 3 are stated
in [10, Theorem 14.0.1] under slightly different conditions.
In particular, the special choice of the parameter β in the
weighting function 1 + βV is not part of the conditions in
[10] at the price that the contraction of the one-step kernel
Pθ is not stated. In addition, in [10] it is a priori assumed
that the Markov-chain is ψ-irreducible and aperiodic, while
in [5] these conditions are circumvented by assuming that
the minorization condition holds on a fairly large set defined
in terms of a level-set of V, see Assumption 2.

III. LIPSCHITZ CONTINUITY OF THE
SOLUTION OF A θ-DEPENDENT POISSON EQUATION

In this section we shall consider the Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (16)

for θ ∈ Θ, where Pθ is given above and fθ : X → R,
hθ = µ∗θ(fθ), and we look for a solution uθ : X→ R. First,
we prove the existence and the uniqueness of the solution for
a fixed θ, then we formulate smoothness conditions on the
kernel P ∗θ , and the right hand side, fθ. Using these conditions
we prove the Lipschitz continuity of the solution uθ(·) in θ.
For a start let θ ∈ Θ be fixed.

Theorem 1: Let Assumptions 1 and 2 hold. Let f be a
measurable function X → R such that |||f |||β < ∞ and let
P = Pθ for some fixed θ, with invariant measure µ∗ = µ∗θ .
Let h = µ∗(f). Then, the Poisson equation

(I − P ∗)u(x) = f(x)− h (17)

has a unique solution u(·) up to an additive constant.
Henceforth, we shall consider the particular solution

u(x) =

∞∑
n=0

(P ∗nf(x)− h), (18)

which is well-defined, in fact the right hand side is absolute
convergent, and in addition µ∗(u) = 0. Furthermore,

|u(x)| ≤ |||f |||βK(x), (19)

where K(x) := 1
1−α

(
2 + βV (x) + β K

1−γ

)
, also implying

‖u‖β <∞.

Outline of the proof: It is immediate to check that (17) is
formally satisfied by u. To show that u is well-defined, use:∣∣∣∣∫

X

ϕ(x)(µ1 − µ2)(dx)

∣∣∣∣ ≤ |||ϕ|||βσβ(µ1, µ2). (20)



For the n th term of the right hand side of (18), we have:

1

|||f |||β
|P ∗nf(x)− µ∗(f)| = 1

|||f |||β
|(Pnδx − µ∗)(f)|

=
1

|||f |||β

∣∣∣∣∫
X

f(y)(Pnδx − Pnµ∗)(dy)

∣∣∣∣ .
We can bound the right hand side by

σβ(Pnδx, P
nµ∗) ≤ αn sup

ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)(δx − µ∗)(dx).

We conclude that the series
∑∞
n=0(P ∗nf(x) − h) is

absolutely convergent, so u(x) is well-defined and satisfies
the desired upper bound. It is readily seen that∫

X

u(x)µ∗(dx) = 0. (21)

The uniqueness follows directly from Proposition 1.
Now we consider a parametric family of kernels (Pθ) and

that of functions (fθ) for θ ∈ Θ, and impose appropriate
smoothness conditions for them in the context of [5].

Assumption 3: There exists a constant LP such that for
every θ, θ′ ∈ Θ and x ∈ X it holds that

σβ(Pθδx, Pθ′δx) ≤ LP |θ − θ′|(1 + βV (x)). (22)

It is easy to show that, under a relaxed drift condition
defined by Assumption 1 without assuming γ < 1, and
under Assumption 3, we have for every θ, θ′ ∈ Θ and every
probability measure µ such that µ(V ) <∞, the inequality

σβ(Pθµ, Pθ′µ) ≤ LP |θ − θ′|µ(1 + βV ). (23)

The above observation is easily extended from probability
measures to signed measures η such that |η|(V ) <∞.

The class of functions {fθ : X → R | θ ∈ Θ} is
characterized by the following assumption:

Assumption 4: We have Kf := supθ∈Θ |||fθ|||β <∞, and
there exists a constant Lf such that, for all θ, θ′, it holds that

‖fθ − fθ′‖β ≤ Lf |θ − θ′|. (24)

The main result of the paper is as follows.

Theorem 2: Let Assumptions 1, 2, 3 and 4 hold, and
consider the parameter-dependent Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (25)

where hθ = µ∗θ(fθ). Then, hθ is Lipschitz continuous in θ:

|hθ − hθ′ | ≤ Lh|θ − θ′|, (26)

and the family of solutions uθ(x) =
∑∞
n=0(P ∗nθ fθ(x)−hθ),

ensured by Theorem 1, is Lipschitz continuous in θ:

|uθ(x)− uθ′(x)| ≤ Lu (1 + βV (x)) |θ − θ′|,

where the constant Lu is independent of x. Note that this
also implies ‖uθ − uθ′‖β ≤ Lu|θ − θ′|.

Outline of the proof: Consider the extended parametric
family of Poisson-equations, where P ∗ and f are indepen-
dently parametrized, with the notation hθ,ψ = µ∗θ(fψ),

(I − P ∗θ )uθ,ψ(x) = fψ(x)− hθ,ψ, (27)

First, we prove that hθ,ψ is Lipschitz-continuous in θ and
ψ. Since hθ = µ∗θ(fθ) = hθ,θ, the Lipschitz-continuity of
hθ, stated in (26) then follows. We can write

|hθ,ψ − hθ,ψ′ | = lim
n→∞

|P ∗nθ fψ(x)− P ∗nθ fψ′(x)|, (28)

|hθ,ψ − hθ′,ψ| = lim
n→∞

|P ∗nθ fψ(x)− P ∗nθ′ fψ(x)|. (29)

We can bound the right hand side of (28) as follows:

|P ∗nθ fψ(x)− P ∗nθ fψ′(x)| ≤ (P ∗nθ |fψ − fψ′ |) (x)

= (Pnθ δx) |fψ − fψ′ |. (30)

Using the Lipschitz continuity of f as given by Assumption
4 and the drift condition Assumption 1, we finally get

lim sup
n→∞

|P ∗nθ fψ(x)−P ∗nθ fψ′(x)| ≤ Lf |ψ−ψ′|
[
1 + β

K

1− γ

]
.

To continue the proof of the we will have to establish the
Lipschitz-continuity of the powers of the kernel Pnθ together
with an upper bound for the Lipschitz constants. We can
show that for any probability measure µ with µ(V ) <∞,

σβ(Pnθ µ, P
n
θ′µ) ≤ LP |θ−θ′|

(
L′P +

αn

α− γ
βµ(V )

)
, (31)

where L′P is determined by the constants showing up in the
assumptions for Pθ. The proof is obtained by using a kind
of telescopic inequality.

A direct corollary is that for measurable functions ϕ with
|||ϕ|||β < ∞ it holds that |P ∗nθ ϕ(x)− P ∗nθ′ ϕ(x)| is bounded
from above by

|||ϕ|||βLP |θ − θ
′|
(
L′P +

αn

α− γ
βV (x)

)
. (32)

From (31) above we immediately get the Lipschitz-continuity
of the invariant measures with L′′P = LPL

′
P :

σβ(µ∗θ, µ
∗
θ′) ≤ L′′P |θ − θ′|. (33)

Inequality (31) has an effective extension for signed mea-
sures η satisfying the additional condition η(X) = 0:

Lemma 2: Assume that Assumptions 1, 2, and 3 hold.
Then for every θ, θ′ ∈ Θ and every signed measure η such
that |η|(V ) <∞ and η(X) = 0, we have

σβ(Pnθ η, P
n
θ′η) ≤ LP |θ − θ′|nαn−1 |η|(1 + βV ). (34)

Returning to the right hand side of (29) we use the upper
bound (32) with ϕ = fψ and let n go to infinity:

lim sup
n→∞

|P ∗nθ fψ(x)−P ∗nθ′ fψ(x)| ≤ |||fψ|||βL
′′
P |θ− θ′|. (35)

Next, we consider the Lipschitz continuity of the doubly-
parametrized particular solution

uθ,ψ(x) =

∞∑
n=0

(P ∗nθ fψ(x)− hθ,ψ). (36)



The critical point is to show that uθ,ψ(x) is Lipschitz-
continuous in θ. Consider the measure in the n-th term:

[Pnθ (δx − µ∗θ)− Pnθ′ (δx − µ∗θ)] + [Pnθ′ (µ
∗
θ′ − µ∗θ)].

The second term of the right hand side can be readily handled
by (33), while the first term can be dealt with using Lemma
2 setting η = δx − µ∗θ . The rest of the proof is analogous to
the proof of Theorem 1.

IV. RELAXATIONS OF THE UNIFORM DRIFT CONDITION

A delicate condition of Propositions 1-3 is Assumption
1, requiring the existence of a common Lyapunov function.
This requirement may be too restrictive even in the case of
linear stochastic systems as discussed in Section II. However,
assuming that (Aθ), θ ∈ Θ is a compact set of stable
matrices we can find a positive integer r such that ‖Arθ‖ ≤
γr < 1 for all θ ∈ Θ. This example motivates the following
relaxation of the drift condition, given as Assumption 1:

Assumption 5 (Uniform Drift Condition for P rθ ):
There exists a positive integer r, a measurable function
V : X→ [0,∞) and constants γr ∈ (0, 1) and Kr ≥ 0 such
that for all θ ∈ Θ and x ∈ X, we have

(P ∗rθ V )(x) ≤ γrV (x) +Kr, (37)

and the following uniform one-step growth condition holds:

(P ∗θ V )(x) ≤ γ1V (x) +K1, (38)

where we can and will assume that γ1 > 1 and K1 ≥ 0.

Note that (38) implies that for any β > 0 there exist C ′ >
0 such that for any function ϕ ∈ LV we have

|||P ∗θ ϕ|||β ≤ α
′|||ϕ|||β , (39)

for all θ with α′ = max(1 +βK1, γ1). From here, repeating
the arguments leading to Proposition 2, we get:

Lemma 3: Assume (38), then for any pair of probability
measures µ1, µ2 on X such that µ1(V ), µ2(V ) <∞ and any
β > 0, we have for all θ,

σβ(Pθµ1, Pθµ2) ≤ α′σβ(µ1, µ2), (40)

Assumption 6 (Uniform Local Minorization for P rθ ): Let
Rr > 2Kr/(1 − γr) where γr and Kr are the constants
from Assumption 5 and Cr = {x ∈ X : V (x) ≤ Rr}. There
exist a probability measure µ̄r and a constant ᾱr ∈ (0, 1)
such that for all θ ∈ Θ, x ∈ Cr and measurable A it holds

P rθ (x,A) ≥ ᾱrµ̄r(A). (41)

The main results cited in Section II can be extended, with
minor modifications, assuming the above relaxed conditions.
For now we fix any θ ∈ Θ and write Pθ = P . Proposition 1
can be restated as follows:

Theorem 3: Under Assumptions 5 and 6 there exist α ∈
(0, 1), β > 0 and C > 0 such that for any measurable ϕ and
n > 0 we have

|||P ∗nϕ|||β ≤ Cα
n|||ϕ|||β ,

where we can choose β = βr, given by Proposition 1 applied
to P r, α = α

1/r
r with some C > 0.

Proof: By Proposition 1 there exist β = βr > 0, and
αr ∈ (0, 1) such that |||P ∗rϕ|||β ≤ αr|||ϕ|||β , implying for
any positive integer m

|||P ∗rmϕ|||β ≤ α
m
r |||ϕ|||β . (42)

For a general positive integer n write n = rm + k with
0 ≤ k ≤ r − 1 to get

|||P ∗nϕ|||β ≤ α
m
r

∣∣∣∣∣∣P ∗kϕ∣∣∣∣∣∣
β
. (43)

To complete the proof apply (39) and obtain

|||P ∗nϕ|||β ≤ α
m
r (C ′)r−1|||ϕ|||β . (44)

Now m = (n−k)/r > n/r−1, hence αmr < α
n/r
r α−1

r , and
thus the claim follows.

Proposition 2 takes now the following modified form:
Theorem 4: Under Assumptions 5 and 6 there exist α ∈

(0, 1), β > 0 and C > 0 such that for any n > 0,

σβ(Pnµ1, P
nµ2) ≤ Cαnσβ(µ1, µ2), (45)

for every pair of probability measures µ1, µ2 on X, where
α and C are given in Theorem 3.

Finally, we have the following extension of Proposition 3:
Theorem 5: Under Assumptions 5 and 6 there exists a

unique probability measure µ∗ on X such that
∫
X
V dµ∗ <

∞ and Pµ∗ = µ∗. Denoting the unique invariant probability
measure for P r by µ∗r we have µ∗ = µ∗r .

Proof: Let µ∗r be the unique invariant probability mea-
sure for P r the existence of which is ensured by Proposition
3. Then

∫
X
V dµ∗r <∞ implies

∫
X
V d(P kµ∗r) <∞ for any

k > 0 by the one-step growth condition, see (39). It follows
that the probability measure µ defined by

µ =
1

r
(I + P + . . . P r−1)µ∗r

also satisfies
∫
X
V dµ < ∞, and it is readily seen that it is

invariant for P. Since any probability measure invariant for
P is also invariant for P r, we have µ = µ∗r . The uniqueness
of an invariant probability measure for P follows by noting
once again if µ′ is invariant for P then it is also invariant
for P r, and hence we must have µ′ = µ∗r .

The main results of Section III can now be extended, with
minor modifications, assuming the above relaxed conditions.
For the extension of Theorem 1 we fix once again any θ ∈ Θ
and write Pθ = P :

Theorem 6: Assume that the kernel P r satsifies Assump-
tions 5 and 6. Let β > 0 be as given in Proposition 1 w.r.t.
the kernel P r. Let f be a measurable function such that
|||f |||β < ∞. Let µ∗ denote the unique invariant probability
measure of P, and h = µ∗(f). Then, the Poisson equation

(I − P ∗)u(x) = f(x)− h (46)



has a unique solution u up to additive constants, and con-
sidering the particular solution u with µ∗(u) = 0, we have

|u(x)| ≤ K(1 + βV (x))|||f |||β (47)

for some constant K > 0 depending only on the constants
appearing in Assumptions 5 and 6.

Outline of the proof: The starting point is the Poisson
equation for P ∗r, noting that h = µ∗(f) = µ∗r(f),

(I − P ∗r)v(x) = f(x)− h. (48)

Consider the particular solution

v(x) =

∞∑
n=0

(P ∗nrf(x)− h). (49)

It is easy to see that

u(x) := (I + P ∗ + . . .+ P ∗(r−1))v(x) (50)

is a solution of (46) and satisfies (47). Considering the
uniqueness of the solution, for the difference of two solutions
∆u we have P ∗∆u(x) = 0, for all x. Then applying r − 1
times P ∗ we get P ∗r∆u(x) = 0, for all x, and thus by
Theorem 1 we conclude that ∆u is a constant function.

A straightforward extension of Theorem 2 is the following:
Theorem 7: Assume that the kernels (P rθ ) satsify As-

sumptions 5 and 6. Let β > 0 be as given in Proposition 1
w.r.t. the kernel (P rθ ). Assume (Pθ) also satisfy Assumption
3. Finally, let (fθ) be a family of measurable functions X→
R such that Assumption 4 holds. Let µ∗θ denote the unique
invariant probability measure of Pθ, and let hθ = µ∗θ(fθ).
Consider the parameter-dependent Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ. (51)

Then, hθ is Lipschitz continuous in θ:

|hθ − hθ′ | ≤ Lh|θ − θ′|, (52)

and the particular solution uθ(x) =
∑∞
n=0(P ∗nθ fθ(x)− hθ)

is well-defined for all θ, and Lipschitz continuous in θ,

|uθ(x)− uθ′(x)| ≤ Lu|θ − θ′|(1 + βV (x)), (53)

where the constants Lh and Lu are independent of x.

Outline of the proof: First we prove that hθ = µ∗θ,r(fθ)
is Lipschitz-continuous referring to Theorem 2 with P rθ
replacing Pθ. For this we will have to verify Assumption
3 (with P rθ replacing Pθ). This is done by extending (31)
assuming only the validity of Assumption 3 for Pθ and the
uniform one-step growth condition, see Assumption 5. We
get for any pair θ, θ′ ∈ Θ, for any probability measure µ
such that µ(V ) <∞ and for any n > 0 we have

σβ(Pnθ µ, P
n
θ′µ) ≤ L′′P |θ − θ′|(α′)n (1 + βµ(V )) , (54)

choosing α′ > γ1, with L′′P depending only on n and the
constants appearing in the conditions of the theorem.

It follows, in view of Theorem 2, that the particular
solution of the Poisson equation

(I − P ∗rθ )vθ(x) = fθ(x)− hθ (55)

given by vθ(x) =
∑∞
n=0 P

∗nr
θ (fθ(x) − hθ) is Lipschitz-

continuous and satisfies

|vθ(x)− vθ′(x)| ≤ Lv|θ − θ′|(1 + βV (x)). (56)

Recalling that (P ∗mθ fθ)(x) = Pmθ δx(f), using (54) it is
readily seen that the solution of (51) defined by

uθ(x) := (I + P ∗θ + . . .+ P
∗(r−1)
θ )vθ(x) (57)

is Lipschitz continuous in θ, and due to the one-step growth
condition it satisfies (53), completing the proof.

V. DISCUSSION

The verification of Assumption 5 may seem to be too
demanding. We propose a simple alternative criterion:

Assumption 7 (Individual Drift Conditions): There exists
a family of measurable functions Vθ : X → [0,∞) and
constants γ ∈ (0, 1) and K ≥ 0 such that for all x and θ

(P ∗θ Vθ)(x) ≤ γVθ(x) +K, (58)

moreover, there exists a measurable V : X → [0,∞) and
constants a, b, c, d with a, c > 0, such that

aV (x) + b ≤ Vθ(x) ≤ cV (x) + d. (59)

Under Assumption 7, for any sufficiently large r Assump-
tion 5 is satisfied with the function V. It is also easily seen
that Theorem 7 remains valid under conditions imposed on
the one-step kernels (Pθ), namely Assumptions 7 and 2.

A possible alternative set of conditions under which the
problems of the paper may be worth studying is provided by
the theory developed in [10], extended in later works, such as
[6] and [7]. However, the extension of Assumption 3 on the
Lipschitz-continuity of Pθ, so that the Lipschitz-continuity
of (I − Pθ)−1 is implied, does not seem obvious.
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