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Introduction

– Stochastic gradient descent (SGD) methods are popular stochastic
approximation (SA) algorithms applied in a wide variety of fields.

– Here, we focus on the special case of least mean square (LMS).

– Polyak’s momentum is an acceleration technique for gradient
methods which has several advantages for deterministic problems.

– K. Yuan, B. Ying and A. H. Sayed (2016) argued that in the
stochastic case it is “equivalent” to standard SGD, assuming fixed
gains, strongly convex functions and martingale difference noises.

– For LMS, they assumed independent noises to ensure this.

– Here, we provide a significantly simpler asymptotic analysis of
LMS with momentum for stationary, ergodic and mixing signals.

– We present weak convergence results and explore the trade-off
between the rate of convergence and the asymptotic covariance.

L. Gerencsér, B. Cs. Csáji, and S. Sabanis LMS with Momentum | 2



Stochastic Approximation with Fixed Gain

Stochastic Approximation (SA) with Fixed Gain

θn+1︸︷︷︸
next

estimate

= θn︸︷︷︸
current

estimate

+ µ︸︷︷︸
fixed
gain

H
(
θn,Xn+1

)︸ ︷︷ ︸
update

operator

◦ θn ∈ Rd is the estimate at time n.

◦ Xn ∈ Rk is the new data available at time n.

◦ µ ∈ [ 0,∞) is the fixed gain or step-size.

◦ H : Rd × Rk → Rd is the update operator.

(SA algorithms are typically applied to find roots, fixed points or
extrema of functions we only observe at given points with noise.)
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Stochastic Gradient Descent

– We want to minimize an unknown function, f : Rd → R, based
only on noisy queries about its gradient, ∇f , at selected points.

Stochastic Gradient Descent (SGD)

θn+1
.

= θn + µ (−∇θf (θn) + εn )

– Polyak’s heavy-ball or momentum method is defined as

SGD with Momentum Acceleration

θn+1
.

= θn + µ (−∇θf (θn) + εn ) + γ ( θn − θn−1 )

– The added term acts both as a smoother and an accelerator.
(The extra momentum dampens oscillations and helps us getting
through narrow valleys, small humps and local minima.)
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Mean-Square Optimal Linear Filter

– [C0] Assume we observe a (strictly) stationary and ergodic
stochastic process consisting input-output pairs {(xt , yt)}, where
regressor (input) xt is Rd -valued, while output yt is R-valued.

– We want to find the mean-square optimal linear filter coefficients

θ∗
.

= arg min
θ∈Rd

E
[

1

2

(
yn − xTn θ

)2
]

– Using R∗
.

= E [ xnx
T
n ] and b

.
= E [ xnyn ], the optimal solution is

Wiener-Hopf Equation

R∗ θ
∗ = b =⇒ θ∗ = R−1

∗ b

– [C1] Assume that R∗ is non-singular, thus, θ∗ is uniquely defined.
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Least Mean Square

– The least mean square (LMS) algorithm is an SGD method

Least Mean Square (LMS)

θn+1
.

= θn + µ xn+1 ( yn+1 − xTn+1θn )

with µ > 0 and some constant (non-random) initial condition θ0.

– Introducing the observation and (coefficient) estimation errors as

vn
.

= yn − xTn θ
∗ and ∆n

.
= θn − θ∗

the estimation error process, {∆n}, follows the dynamics

∆n+1 = ∆n − µ xn+1 x
T
n+1 ∆n + µ xn+1 vn+1

with ∆0
.

= θ0 − θ∗. Note that E [ xnvn ] = 0 for all n ≥ 0.
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The Associated ODE

– A standard tool for the analysis of SA methods is the associated
ordinary differential equation (ODE). In the LMS case (for t ≥ 0)

d

dt
θ̄t = h(θ̄(t)) = b − R∗θ̄t with θ̄0

.
= θ0

where h(θ)
.

= E [ xn+1(yn+1 − xTn+1θ) ] is the mean update for θ.

– A piecewise constant extension of {θn} is defined as θct
.

= θ[t],
(note that here [ t ] denotes the integer part of t).

– LMS is modified by taking a truncation domain D, where D is the
interior of a compact set; then we apply the stopping time

τ
.

= inf{ t : θct /∈ D }.

– [C2] We assume that the truncation domain is such that the
solution of the ODE defined above does not leave D.

L. Gerencsér, B. Cs. Csáji, and S. Sabanis LMS with Momentum | 7



The Error of the ODE

– Let us define the following error processes for the mean ODE

θ̃n
.

= θn − θ̄n and θ̃ct
.

= θct − θ̄t

– The normalized and time-scaled version of the ODE error is

Vt(µ)
.

= µ−1/2 θ̃[ (t∧τ)/µ ] = µ−1/2 θ̃c(t∧τ)/µ

– We will also need the asymptotic covariance matrices of the
empirical means of the centered correction terms, given by

S(θ)
.

=
+∞∑

k=−∞
E
[

(Hk(θ)− h(θ))(H0(θ)− h(θ))T
]

where Hn(θ)
.

= xn(yn− xTn θ), which series converges, for example,
under various mixing conditions (this will be ensured by [C3]).
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Weak Convergence for LMS

– [C3] We assume that the process defined by

Lt(µ)
.

=
∑[t/µ]−1

n=0

(
Hn(θ̄µn)− h(θ̄µn)

)√
µ

converges weakly, as µ→ 0, to a time-inhomogeneous zero-mean
Brownian motion {Lt} with local covariances {S(θ̄t)}.

Theorem 1: Weak Convergence for LMS

Under conditions C0, C1, C2 and C3, process {Vt(µ)} converges
weakly, as µ→ 0, to a process {Zt} satisfying the following linear
stochastic differential equation (SDE), for t ≥ 0, with Z0 = 0,

dZt = −R∗Zt dt + S
1/2(θ̄t) dWt

where {Wt} is a standard Brownian motion in Rd .
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Momentum LMS

LMS with Momentum Acceleration

θn+1
.

= θn + µ xn+1 ( yn+1 − xTn+1θn ) + γ ( θn − θn−1 )

with µ > 0, 1 > γ > 0, and some non-random θ0 = θ−1.

– The filter coefficient errors now follow a 2nd order dynamics

∆n+1 = ∆n − µ xn+1 x
T
n+1 ∆n + µ xn+1 vn+1 + γ (∆n −∆n−1)

with ∆0 = ∆−1 (recall that ∆n
.

= θn − θ∗ and vn
.

= yn − xTn θ
∗).

– To handle higher-order dynamics, we can use a state-vector,

Un
.

=

[
∆n

∆n−1

]
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State-Space Form for Momentum LMS

– Using Un
.

= [ ∆n, ∆n−1 ]T, the state-space dynamics becomes

Un+1 = Un + An+1Un + µWn+1,

An+1
.

=

[
γI − µ · xn+1x

T
n+1 −γI

I −I

]
, Wn+1

.
=

[
xn+1vn+1

0

]
– This, however, does not have the canonical form of SA methods.

– We apply a state-space transformation by Yuan, Ying and Sayed,

T
.

= T (γ) =
1

1− γ

[
I −γI
I −I

]

T−1 .
= T−1(γ) =

[
I −γI
I −I

]
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Transformed State-Space Dynamics

– To get a standard SA form, we also need to synchronize γ and µ,

µ

1− γ
= c (1− γ) leading to µ = c (1− γ)2.

with some fixed constant (hyper-parameter) c > 0.

– After applying T , the transformed dynamics becomes an (almost)
canonical SA recursion with the fixed gain λ

.
= 1− γ as follows:

Ūn+1 = Ūn + λ
( [

B̄n+1 + λ D̄n+1

]
Ūn + W̄n+1

)
B̄n

.
=

[
0 0
0 −I

]
+ c

[
−1 1
−1 1

]
⊗ xnx

T
n ,

D̄n
.

= c

[
0 −1
0 −1

]
⊗ xnx

T
n , W̄n

.
= c

[
xnvn
xnvn

]
.
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The Associated ODE for Momentum LMS

– Let us introduce the notations

H̄n(Ū)
.

= (B̄n + λD̄n)Ū + W̄n

h(Ū)
.

= E [ H̄n(Ū) ] = B̄λ Ū

B̄λ
.

= E [ B̄n + λD̄n ] =

[
0 0
0 −I

]
+ c

[
−1 1− λ
−1 1− λ

]
⊗ R∗

Then, the associated ODE takes the form, with ¯̄U0 = Ū0,

d

dt
¯̄Ut = h̄( ¯̄Ut) = B̄λ

¯̄Ut

– The solution for the limit when λ ↓ 0 is denoted by ¯̄U∗t .

– Lemma: If λ is sufficiently small, then B̄λ is stable.

L. Gerencsér, B. Cs. Csáji, and S. Sabanis LMS with Momentum | 13



The ODE Error for Momentum LMS

– [C2’] We again introduce a truncation domain, D̄, as an interior
of a compact set, and assume that the ODE does not leave D̄.

– We set a stopping time for leaving the domain

τ̄
.

= inf { n : Ūn /∈ D̄ }

– And define the error process, for n ≥ 0, as

˜̄Un
.

= Ūn − ¯̄Un

– Finally, the normalized and time-scaled error process is

V̄t(λ)
.

= λ−
1/2 ˜̄U [ (t∧τ̄)/λ ]

– However, the weak convergence theorems for SA methods cannot
be directly applied, because there is an extra λ term in the update.
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Approximation by Standard SA Recursion

– We will approximate the original process by (of course, Ū∗0 = Ū0)

Ū∗n+1 = Ū∗n + λ
(
B̄n+1Ū

∗
n + W̄n+1

)
– Using the same steps as before, we can define the normalized and

time-scaled ODE error process for the approximation as

V̄ ∗t (λ)
.

= λ−
1/2 ˜̄U∗[ (t∧τ̄∗)/λ ]

where the truncation domain D̄∗, for τ̄∗, is such that D̄ ⊆ int(D̄∗).

– [CW] Assume V̄t(λ)− V̄ ∗t (λ) converges weakly to 0, as λ→ 0
(for Momentum LMS, this could be proved based on linearity).

– Thus, weak convergence results can be applied to the approximate
process, {V̄ ∗t (λ)}, and the results will carry over to {V̄t(λ)}.
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Local Covariances for Momentum LMS

– The asymptotic covariance matrices of the empirical means of the
centered correction terms are (under reasonable conditions)

S̄(Ū)
.

=
+∞∑

k=−∞
E
[

(H̄∗k (Ū)− h̄∗(Ū))(H̄∗0 (Ū)− h̄∗(Ū))T
]

where H∗k and h∗ denote the limit of Hk and h as λ ↓ 0.

– [C3’] We assume that the process defined by

L̄t(λ)
.

=

[t/λ]−1∑
n=0

(
H̄∗n( ¯̄U∗λn)− h̄∗( ¯̄U∗λn)

)√
λ

converges weakly, as λ→ 0, to a time-inhomogeneous zero-mean
Brownian motion {L̄t} with local covariance matrices {S̄( ¯̄U∗t)}.
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Weak Convergence for Momentum LMS

Theorem 2: Weak Convergence for Momentum LMS

Under conditions C0, C1, C2’, C3’ and CW, process {V̄t(λ)}
converges weakly, as λ→ 0, to a process {Z̄t} satisfying the
following linear stochastic differential equation (SDE),

dZ̄t = B̄∗ Z̄t dt + S̄
1/2 ( ¯̄U∗t) dW̄t

for t ≥ 0, with initial condition Z̄0 = 0, where {W̄t} is a standard
Brownian motion in R2d and matrix B̄∗ is defined as

B̄∗
.

= lim
λ ↓ 0

B̄λ =

[
0 0
0 −I

]
+ c

[
−1 1
−1 1

]
⊗ R∗
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Lyapunov Equation for Momentum LMS

– The asymptotic covariance matrix of {Z̄t}, denoted by P̄,
satisfies the Lyapunov equation (it is a transformed process)

B̄∗P̄ + P̄B̄T
∗ + S̄ = 0

– Lemma: the solution of this Lyapunov equation is

P̄ =
c

2

[
c S + 2P0 c S

c S c S

]
where P0 is the asymptotic covariance of the weak limit of LMS.

– Let us denote the asymptotic covariance matrix of {T+
1 Z̄t} by P,

where T+
1 is the limit of T−1(γ) as γ → 1 (or λ→ 0). Then,

P = T+
1 P̄ (T+

1 )T = c

[
P0 P0

P0 P0

]
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Comparing LMS with and without Momentum

Theorem 3: Asymptotic Covariance of Momentum LMS

Assume C0, C1, C2, C2’, C3, C3’, CW and that the weak
convergences carry over to N (0,P0) and N (0,P), as t →∞, in
the case of plain and Momentum LMS methods, respectively.

Then, the covariance (sub)matrix of the asymptotic distribution
associated with LMS with momentum is c · P0, where P0 is the
corresponding covariance of plain LMS and c = µ/(1− γ)2.

– If c = 1, then the two asymptotic covariances are the same.

– But, the convergence rates are quite different, as the normalization
is µ−1/2 for LMS and λ−1/2 for Momentum LMS with λ =

√
µ.

– Decreasing c decreases the asymptotic covariance matrix, but it
also decreases the convergence rate, and vice versa, λ =

√
µ/c .
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Summary

– We have analyzed the effect of momentum acceleration on the
LMS algorithm, as a special case of SGD with fixed gain.

– Momentum acceleration has many known advantages in the
deterministic case, but in a stochastic setting it is found to be
“equivalent” to standard SGD by Yuan, Ying and Sayed (2016).

– However, for fixed-gain LMS, they only showed this equivalence
for the (restrictive) special case of independent observations.

– Here, we provided a simpler asymptotic analysis of LMS with
momentum acceleration for stationary, ergodic and mixing signals.

– We presented weak convergence results and explored the trade-off
between the rate of convergence and the asymptotic covariance.

– The approach can be generalized to a wide range of SA methods.
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