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Overview

•Data-driven uncertainty quantification
(UQ) for models built by kernel methods.
•UQ takes the form of confidence regions
for ideal representations of the true function.
•The core idea is to perturb the residuals
in the gradient of the objective function.
•Distribution-free (unlike GP regression),
only some mild regularities are assumed.
•Non-asymptotic (finite sample) guarantees.
•Exact (user-chosen) coverage probabilities.
•Convex quadratic problems and symmetric
noises ⇒ the regions are star convex and
have ellipsoidal outer approximations.
•Examples: LS-SVM, KRR, SVR & kLASSO.

Preliminaries

We are given a data sample, Dn, of observations,
(x1, y1), . . . , (xn, yn) ∈ X × R,

with X 6= ∅. Let x .= (x1, . . . , xn)T ∈ X n and
y
.= (y1, . . . , yn)T ∈ Rn. The Gram matrix of a

kernel k : X × X → R, w.r.t. input vector x, is
[ Kx ]i,j .= k(xi, xj).

Let H be an RKHS induced by kernel k. Then,
for any objective function g having the form
g(f,Dn) .= L

(
(x1, y1, f (x1)), . . . , (xn, yn, f (xn))

)
+ Λ( ‖f‖H ),

where L is an arbitrary loss function, Λ is a non-
decreasing regularizer, there is a solution with

fα(z) =
∑n

i=1αik(z, xi),
which is ensured by the representer theorem.

Ideal Representations

Let the data be generated by noisy observations of
an underlying true function, f∗, for i = 1, . . . , n,

yi
.= f∗(xi) + εi,

where {εi} are the noises; let ε .= (ε1, . . . , εn)T.
Let Hα ⊆ H be the subspace of fα functions. An
f0 ∈ Hα, having coefficients α∗ ∈ Rn, is called an
ideal representation of f∗ w.r.t. Dn, if for all i,

f0(xi) = f∗(xi).
Note that α∗ is unique if rank(Kx) = n, since ideal
coefficients satisfy Kxα

∗ = (f∗(x1), . . . , f∗(xn))T.

Distributional Invariance

An Rn-valued random vector ε is distributionally
invariant w.r.t. a compact group of transforma-
tions, (G, ◦), where “◦” is the function composition
and each G ∈ G maps Rn to itself, if for all G ∈ G,
vectors ε and G(ε) have the same distribution.
E.g.: {εi} are exchangeable (G: permutations); or
independent and symmetric (G: sign-changes).

Main Assumptions

A1The kernel, k, is strictly positive definite and
all inputs, {xi}, are almost surely distinct.

A2The input vector x and the noise vector ε are
independent (from each other, not internally).

A3The noises, {εi}, are distrib. invariant w.r.t.
a known group of transformations, (G, ◦).

A4The gradient, or a subgradient, of the
objective w.r.t. α exists and it only depends
on y through the residuals, i.e., there is ḡ,

∇α g(fα,Dn) = ḡ(x, α, ε̂(x, y, α)),
where the residuals are defined as

ε̂(x, y, α) .= y − Kxα.

A1 ⇒ α∗ is a.s. unique; A2 ⇒ no autoregression;
A3⇒ ε can be perturbed; A4 holds in most cases.

Perturbed Gradients

Let us define a reference function, Z0 : Rn → R,
and m − 1 perturbed functions, {Zi}, with Zi :
Rn→ R, where m is a hyper-parameter, as

Z0(α) .= ‖Ψ(x) ḡ(x, α,G0(ε̂(x, y, α))) ‖2,

Zi(α) .= ‖Ψ(x) ḡ(x, α,Gi(ε̂(x, y, α))) ‖2,

for i = 1, . . . ,m − 1, where Ψ(x) is a weighting
matrix, G0 is the identity element of G and {Gi}
are uniformly sampled i.i.d. elements from G.
Note that if α = α∗, Z0(α∗) d= Zi(α∗), for all i.
On the other hand, for α 6= α∗, this distributional
equivalence does not hold, and if ‖α−α∗‖ is large
enough, Z0(α) will dominate {Zi(α)}m−1

i=1 .

Confidence Regions

The normalized rank of the reference element,
Z0(α), among all {Zi(α)}m−1

i=0 elements is

R(α) .= 1
m

 1 +
m−1∑
i=1

I
(
Z0(α) ≺π Zi(α)

),
where I(·) is an indicator function and binary re-
lation “≺π” is “<” with random tie-breaking.
A confidence region for probability p = 1− q/m is

Ap
.=
{
α : R(α) ≤ 1− q/m

}
,

where m, q ∈ N with 0 < q < m are user-chosen.
The main non-asymptotic and distribution-free
claim about the stochastic guarantees of Ap is:

Main Theorem

Under Assumptions A1, A2, A3 and A4, the
coverage probability of the confidence region
w.r.t. the ideal coefficient vector α∗ is exactly

P
(
α∗ ∈ Ap

)
= p = 1− q

m

for any hyper-parameters with 0 < q < m.
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Figure 1: UQ for (linear) LS-SVM classification in the model
space based on n = 100 observations (G: sign-changes).
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Figure 2: UQ for (linear) LS-SVM classification in the param-
eter space with various non-asymptotic confidence ellipsoids.
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Figure 3: UQ for kernelized LASSO (Gaussian kernel) based on
n = 20 observations with Laplace noises (G: sign-changes).

Contact Information

Email: csaji@sztaki.hu (Balázs Cs. Csáji)
Website: http://www.sztaki.hu/~csaji/

Poster presented at ECML-PKDD, Würzburg, Germany, 2019

mailto: csaji@sztaki.hu
http://www.sztaki.hu/~csaji/

