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Abstract— Sign-Perturbed Sums (SPS) is a non-asymptotic
system identification method that can construct confidence
regions for general linear systems. It works under mild sta-
tistical assumptions, such as symmetric and independent noise
terms. The SPS confidence region includes the prediction error
estimate (PEM) and, for any finite sample and user-chosen con-
fidence probability, it contains the true system parameter with
exactly the given probability. Originally, SPS was introduced
for open-loop systems, this paper overviews its applicability
in closed-loop setups. The three main PEM approaches of
closed-loop identification are addressed: direct, indirect and
joint input-output, and it is discussed whether SPS can be
applied to construct guaranteed finite sample confidence regions
around these PEM estimates. Some parametrization issues are
also highlighted and, finally, two numerical experiments are
presented demonstrating SPS for closed-loop systems.

I. INTRODUCTION

Standard system identification methods are typically for-
mulated assuming open-loop systems, while in practice, for
example in industry, plants usually operate in closed-loop. In
many cases, because of stability, safety or efficiency reasons,
experimental data can only be gathered under feedback
control. Other examples include biological and economical
systems where the feedback mechanism is intrinsic and hence
performing open-loop experiments is not possible. Unfortu-
nately, several identification methods perform poorly under
certain experimental conditions, such as feedback control
[9], [10]. Therefore investigating identification methods for
closed-loop systems is of high practical importance. More-
over, having feedback control may even be advantageous
in some situations [5], e.g., in “identification for control”:
models identified in closed-loop are more reliable in the
critical zones, which are important for robust control [6].

The main problem of identifying closed-loop systems,
of course, comes from the dependencies between the input
signal and the noise process of the system. This may cause
many standard approaches, including instrumental variable-,
subspace-, correlation- and spectral analysis methods to fail
in closed-loop [4]. An example of an algorithm that does
work in a closed-loop setting is the prediction error method
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(PEM), which has three main directions to address closed-
loop problems: (i) the direct, (ii) the indirect and (iii) the joint
input-output approach (see Section IV for more details).

In many applications, for example, those that involve
strong safety, stability or quality constraints, point estimates
need to be accompanied by confidence regions. These regions
may serve as quality tags and are also essential for robust
control design. The standard way of obtaining such regions
is to build confidence ellipsoids based on the asymptotic
distribution of the estimate [9], [10], which is Gaussian in the
PEM case. However, this only leads to approximate results
in a finite sample setting. Therefore, these confidence sets do
not come with strict theoretical guarantees for finite datasets
and, consequently, should be used only as heuristics.

Motivated by this, the recently developed Sign-Perturbed
Sums (SPS) method [1], [2], [3], [7], [8] can build guaranteed
non-asymptotic confidence regions around a given nominal
estimate under mild statistical assumptions, such as indepen-
dent and symmetric noise terms. Particularly, in [1] it was
shown that SPS can build finite sample confidence regions
for parameters of general linear systems which are centered
around the PEM estimate and contain the true parameter with
an exact confidence probability, which is user-chosen.

The original SPS approach assumes open-loop control, in
this paper we analyze the applicability of SPS for closed-loop
systems. Particularly, we address the problem of generating
confidence regions around the direct, indirect and joint-
input output PEM estimates of general linear systems. We
analyze the construction of the appropriate SPS regions, their
confidence probabilities and some parametrization issues.

II. PROBLEM SETTING

Let us consider the following scalar linear system [9], [10]

Yt , G(z−1; θ∗)Ut +H(z−1; θ∗)Nt, (1)

where Yt is the output, Ut is the input, Nt is the noise at (dis-
crete) time t; G, H are (causal) rational transfer functions;
and z−1 is the backward shift operator. The true parameter
is θ∗ ∈ Θ, where Θ is the set of allowed parameters. The
system operates in closed-loop and the feedback rule is

Ut , L(z−1; η∗)Rt − F (z−1; η∗)Yt, (2)

where Rt could be a reference signal, setpoint or noise
affecting the controller at time t (or simply zero). Operators
F (z−1, η∗) and L(z−1, η∗) are (causal) rational transfer
functions, which are parametrized independently of (1).

Our main assumptions on the system are as follows
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Fig. 1. General structure of the addressed systems.

A1 The “true” systems generating {Yt} and {Ut} are in
the model classes; G and H have known orders.

A2 Transfer function H(z−1; θ) has a stable inverse, and
G(0; θ) = 0 and H(0; θ) = 1, for all θ ∈ Θ.

A3 The noise sequence {Nt} is independent, and each Nt
has a symmetric probability distribution about zero.

A4 The initialization is known, Yt = Nt = Rt = 0, t ≤ 0

A5 The subsystems from {Nt} and {Rt} to {Yt} are asymp-
totically stable and have no unstable hidden modes.

A6 Signal {Rt} is independent of the noise {Nt}.
Assumption A5 implies that filters L(z−1; θ), H(z−1; θ)

and (1 +G(z−1; θ)F (z−1; θ))−1 are stable [10].
Note that for most asymptotic results related to PEM

we typically also assume that {Rt} is persistently exciting,
which is needed to ensure that the control is informative,
for example, it is immediately implied if L(z−1, η∗) is the
identity filter [9]. Sometimes the controller is allowed to be
time varying, e.g., it can switch between i = 1, . . . , r modes

Ut , Li(z
−1; η∗)Rt − Fi(z−1; η∗)Yt,

which helps to perform informative experiments, e.g., if there
is no external signal [9], [10]. Here, for simplicity we do not
consider this case, however, it is straightforward to extend
the confidence region constructions to allow this.

Given a finite sample of size n containing the inputs, {Ut},
the outputs, {Yt}, and the external signal, {Rt}, as well as
a user-chosen confidence probability p, we aim at building
a guaranteed confidence region for the true parameter, θ∗

(or for (θ∗, η∗) in case of joint input-output identification),
which also contains a given nominal estimate, such as the
direct, the indirect or the joint-input output PEM estimate.
Before we investigate closed-loop SPS, we briefly review its
construction in case of open-loop systems following [1].

III. REVIEW OF OPEN-LOOP SPS

In this section we assume that the system operates in open-
loop, namely, that {Ut} and {Nt} are independent.

Under our assumptions, given a particular θ the noise
terms can be reconstructed from an inverted system [10],

N̂t(θ) , H−1(z−1; θ)(Yt −G(z−1; θ)Ut),

which are referred to as residuals or prediction errors. It is
important to note that N̂t(θ∗) = Nt, for all t.

In this paper we concentrate on the quadratic cost criterion,
thus the prediction error estimate, θ̃n, is defined as [9]

θ̂n , arg min
θ∈Θ

n∑
t=1

N̂2
t (θ),

where Θ is the class of allowed models. The prediction error
estimate satisfies the following (c.f. “normal”) equation

n∑
t=1

N̂t(θ̂n)ψt(θ̂n) = 0, (3)

where ψt(θ) denotes the gradient of N̂t(·) w.r.t. parameter θ.
Note that for standard polynomial models, like Box-Jenkins,
there are closed-form expressions for the gradients [9], [1].

SPS builds its confidence region by perturbing equation
(3): given a specific θ to test, it inverts the system by com-
puting the prediction errors, then it builds m− 1 alternative
output trajectories using perturbed versions of the residuals,

Ȳt(θ, αi) , G(z−1; θ)Ut +H(z−1; θ) (αi,tN̂t(θ)),

where {αi,t} are (m − 1) × n i.i.d. random signs, that is
random variables which take values ±1 with probability 1/2
each; and αi denotes the vector (αi,1, . . . , αi,n). Note that n
is the sample size of the residuals we can reconstruct from
the observations and m is a user-chosen design parameter,
affecting the confidence probability, see later.

It is known that function ψt(θ) can be treated as a linear
filter which takes {Yt} and {Ut} as inputs, that is

ψt(θ) = W (z−1; θ)Yt +Q(z−1; θ)Ut,

where W and Q are vector-valued linear filters.
Then, we produce m− 1 perturbed versions of ψt(θ) by

ψ̄t(θ, αi) , W (z−1; θ) Ȳt(θ, αi) +Q(z−1; θ)Ut,

and define a reference and m− 1 sign perturbed functions

S0(θ) , Ψ
− 1

2
n (θ)

n∑
t=1

ψt(θ)N̂t(θ),

Si(θ) , Ψ̄
− 1

2
n (θ, αi)

n∑
t=1

αi,t ψ̄t(θ, αi)N̂t(θ),

where i ∈ {1, . . . ,m − 1}, and matrices Ψn and Ψ̄n(θ, αi)
are (perturbed) covariance estimates defined by [1]

Ψn(θ) ,
n∑
t=1

ψt(θ)ψ
T
t (θ),

Ψ̄n(θ, αi) ,
n∑
t=1

ψ̄t(θ, αi)ψ̄
T
t (θ, αi),

which are primarily used to shape the confidence region, but
they do not affect the confidence probability.

Testing whether a particular parameter θ is in the SPS
confidence region is based on the rank of ‖S0(θ)‖2 in
the ordering of variables {‖Si(θ)‖2}. Since, there could be
ties, we introduce a strict total order with the help of a
uniform random permutation. More precisely [3], let ν be a
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random permutation on {0, . . .m−1}. Given m real numbers
Z0, . . . , Zm−1 we define a strict total order �ν as follows

Zk �ν Zj if and only if

(Zk > Zj ) or (Zk = Zj and ν(k) > ν(j) ) .

We denote the rank of ‖S0(θ)‖2 in the ordering (w.r.t. �ν)
of the variables {‖Si(θ)‖2} byR(θ). For example,R(θ) = 1
if ‖S0(θ)‖2 is the smallest in the ordering of {‖Si(θ)‖2},
R(θ) = 2 if it is the second smallest and so on.

Then, the SPS confidence region is constructed by

Θ̂n , { θ ∈ Θ : R(θ) ≤ m− q } ,

where m > q > 0 are user-chosen integer parameters.
One of the main advantages of SPS is that its confidence

region has exact confidence probability: it can be proven [1]
that under assumptions A1, A2, A3, A4 and assuming open-
loop inputs, the coverage probability of θ∗ is exactly1

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
.

Since m and q are user-chosen parameters, the confidence
probability is under our control. Moreover, since the PEM
estimate, θ̂n, satisfies equation (3), we have ‖S0(θ̂n)‖2 = 0
implying that the PEM estimate is always included in the
SPS confidence region, assuming it is non-empty.

In the special case of linear regression problems, such as
generalized finite-impulse response (FIR) systems, it can be
proved, as well, that the SPS confidence region is strongly
consistent [2] and it is also star convex with the least-squares
estimate as a star center [3]. Nevertheless, the main strength
of SPS lies in the non-conservativeness of its confidence sets.

IV. CLOSED-LOOP SPS

In this section we turn our attention to build SPS confi-
dence regions for closed-loop systems around various PEM
estimates. There are three main approaches to estimate
closed-loop systems with PEM [4], [9], [10], namely

1) Direct Identification: The goal is to estimate θ∗, i.e., to
find H and G. The standard (open-loop) PEM is applied
on the original system and the existence of feedback is
neglected. We will refer to this as direct PEM.

2) Indirect Identification: The goal is again to estimate θ∗,
i.e., to identify H and G. It is assumed that the reference
signal {Rt} is measurable and the control mechanisms,
F and L, are known. Under this assumptions, the system
can be traced back to an open-loop system (by treating
the reference signal as the input) and an open-loop PEM
estimate can be computed using the modified system.
We will refer to this as indirect PEM.

3) Joint Input-Output Identification: The goal is to estimate
(θ∗, η∗), namely to identity both the system given by H
and G as well as the controller F . For this case, we will
assume that there is no reference signal. The system is

1The original proof used a slightly different tie-breaking rule, however,
they are equivalent hence this does not affect the confidence probability.

analyzed as if both {Yt} and {Ut} were outputs. We
will refer to this approach as input-output PEM.

In what follows we investigate SPS for these PEM variants.

A. Direct Identification

Direct PEM, i.e., when we disregard the feedback and
treat the system as it operated in open-loop, has several
advantages [9], e.g., it works regardless of the complexity
of the regulator which can be unknown, it does not require
special algorithms, consistency and optimal accuracy can be
obtained and even unstable systems can be handled.

Following these ideas, we can try to apply SPS to build
confidence sets in the same way: by simply neglecting the
controller. We will refer to this approach as naive SPS.

We have to be careful though, since standard SPS as de-
scribed by Section III does not lead to guaranteed confidence
regions for closed-loop setups. The reason for this is that

Ȳt(θ, αi) , G(z−1; θ)Ut +H(z−1; θ) (αi,tN̂t(θ)),

does not produce valid alternative output trajectories in case
the perturbed noises are applied. Namely, in case the past
outputs are different, {Ut} should be different, as well,
because of the closed-loop nature of the problem. This means
that {‖Si(θ∗)‖2} will not have the same distribution for all
i ∈ {0, . . . ,m − 1}, since the feedback is neglected for
i = 1, . . . ,m− 1, while the original system, represented by
i = 0, took it into account when the outputs were generated.

Since the conditional i.i.d. nature of {‖Si(θ∗)‖2} variables
is the key element of proving the exact confidence probability
of SPS sets, this result is not guaranteed for naive SPS.

A natural approach to solve this is to produce alternative
input trajectories, too. A disadvantage of doing so is that it
requires access to the controller. On the other hand, we do
not need an explicit model, e.g., a closed-form expression,
for the regulator (it may even be nonlinear), we only need
to be able to simulate it for some (alternative) outputs.

In this case the alternative trajectories are

Ỹt(θ, αi) , G(z−1; θ) Ūt(θ, αi) +H(z−1; θ) (αi,tN̂t(θ)),

where, assuming the controller is (2), input Ūt(θ, αi) is

Ūt(θ, αi) , L(z−1; η∗)Rt − F (z−1; η∗) Ȳt(θ, αi),

note that this does not lead to an algebraic loop, since there
is a delay in the controller (A2), i.e., G(0; θ) = 0.

Then, we redefine the alternative versions of ψt(θ) by

ψ̃t(θ, αi) , W (z−1; θ) Ỹt(θ, αi) +Q(z−1; θ) Ūt(θ, αi).

The rest of the process of building the SPS region follows
Section III, the only change is that we replace functions
{ψ̄t(θ, αi)} with the modified {ψ̃t(θ, αi)}. The confidence
probability 1− q/m is again exact; and a very similar proof
can be used as before (see the Appendix of [1]) with treating
{Yt} as the output and the reference signal {Rt} as the input.
Also, since the direct PEM estimate satisfies equation (3), it
is always included in the SPS confidence region, assuming
it is non-empty. We call this method direct SPS.
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B. Indirect Identification

The idea of indirect PEM is to rewrite the original (1)-(2)
in an alternative way as an open-loop system [10], that is

Yt = G0(z−1;κ∗)Rt +H0(z−1;κ∗)Nt, (4)

where filters G0(z−1;κ∗) and H0(z−1;κ∗) are defined by

G0(z−1;κ∗) , (1 +GF )−1GL,

H0(z−1;κ∗) , (1 +GF )−1H,

where, for simplicity, we omitted the dependence on the
backward shift operator, z−1, and the true parameters, θ∗

and η∗, from the notation of the filters G,H,F and L. In
this approach it is assumed that F and L are known. The new
filters G0(z−1;κ) and H0(z−1;κ) producing the outputs can
be parametrized differently than the original filters.

Since the new system (4) is open-loop (A6), with inputs
{Rt} and outputs {Yt}, the standard SPS construction for
open-loop systems, presented in Section III, can be used to
build a confidence region around the indirect PEM estimate.
The difference is that we must use the alternative system (4)
and identify the parameters of G0 and H0, namely κ∗.

If filters G0 and H0 are not parametrized by θ, the new
parameters κ, to be tested by SPS, can be computed from
θ. For example, if θ are the potential parameters, we should
compute κ parametrizing G0 and H0 from

(1 +G(θ)F )−1G(θ)L = G0(κ),

(1 +G(θ)F )−1H(θ) = H0(κ).

Assuming we have an (exact or approximate) solution given
by κ = g(θ) the SPS confidence set construction should take
this parameter transformation into account, that is

Θ̂ id
n , { θ ∈ Θ : R(g(θ)) ≤ m− q } ,

where otherwise the construction is the same as in Section
III, assuming the external signal, {Rt}, is treated as the input,
instead of {Ut}, i.e., system (4) is identified.

In this case, we need to following assumption to guarantee
the exact confidence of the indirect SPS region

A7 Parameter transformation g satisfies g(θ∗) = κ∗.

A7 is clearly satisfied if, e.g., we also use θ to parametrize
G0 and H0, i.e., if g is the identity transformation, which
is the simplest approach to take, but may complicate the
parametrization. Naturally, transformation g will affect the
shape of the confidence region and should be chosen care-
fully. Furthermore, based on the usual “root of the normal
equation” argument, the indirect PEM estimate is always
included in the indirect SPS set, assuming it is non-empty.

Some notes on parametrization are due. Henceforth in this
subsection we focus on ARMAX systems. Assume that L is
the identity, and (the known) F can be factorized as

F (z−1) =
D(z−1)

K(z−1)
,

where the polynomials D and K are coprime. Also assume
that (1) has an ARMAX model structure, that is

A(z−1; θ)Yt = B(z−1; θ)Ut + C(z−1; θ)Nt, (5)

as well as the indirect system (4) takes an ARMAX form,

A0(z−1;κ)Yt = B0(z−1;κ)Rt + C0(z−1;κ)Nt, (6)

then, we may get polynomials A, B, C by solving

A0(z−1;κ) = A(z−1; θ)K(z−1) +B(z−1; θ)D(z−1),

B0(z−1;κ) = B(z−1; θ)K(z−1),

C0(z−1;κ) = C(z−1; θ)K(z−1).

Assuming θ is known, this leads to a system of linear
equations for the unknown κ parameters, which then can be
calculated or estimated [5], if we have “enough” equations.
This may not be the case if the regulator is not complex
enough: it is known that a closed-loop experiment may be
non-informative even if the input signal itself is persistently
exciting and the regulator is perfectly known (c.f. Example
13.3 of [9]). Closed-loop identifiability is harder if we do not
have a reference signal. The reader may consult Complement
10.1 of [10] for necessary and sufficient conditions for the
identifiability of closed-loop ARMAX systems.

Finally, we argue that it has an advantage of using the
canonical parametrization for (6), especially if there is no
reference signal, even if it requires solving a system of
linear equations to get the parameters of (5). Namely, this
ensures that asymptotically the true system parameter will
be the only critical point of the (quadratic) cost function
(c.f. Complement 7.6 of [10]). This is not only an advantage
from the viewpoint of finding the PEM estimate numerically,
but also preferable for building SPS regions as they, by
construction, include all critical points of the cost function.

C. Joint Input-Output Identification
In case of joint input-output identification, the controller

is also unknown and should be identified, i.e., both θ∗

and η∗ need to be estimated. Nevertheless, the structure of
the controller should be known, including the orders of its
polynomials. Here, for simplicity, we assume that there is
no reference signal (Rt ≡ 0). The core idea is to regard
(Yt, Ut)

T as the output of a two dimensional time series,
and identify its parameters by open-loop PEM techniques.

Let Zt , (Yt, Ut)
T and consider the following

Zt =

[
Yt
Ut

]
=

[
(I +GF )−1H
−F (I +GF )−1H

]
Nt = H̃(z−1, κ∗)Nt,

which is an autonomous system driven by an independent
sequence of symmetric noise terms, {Nt}. In order to build
a joint confidence region for (θ∗, η∗), a MIMO extension
of SPS would be needed. This is in fact possible and
also leads to confidence regions with exact guarantees, for
example, it is not hard to generalize the proof in [1] for the
multidimensional case. However, we will leave this extension
for further research along with other open issues, such as
finding a preferable parametrization for joint input-output
SPS, which ensures well-shaped confidence regions.
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V. SIMULATION SUPPORTED EXAMPLES

In this section we present two simple examples where SPS
is applied to closed-loop systems. First, an ARX system is
investigated, where the regulator is driven by an observed ref-
erence signal. This system is estimated by direct and indirect
PEM methods for which direct and indirect SPS regions are
constructed. Then, we present an ARMAX system regulated
without an external reference signal, for which a direct PEM
estimate is calculated with its direct SPS confidence region.

A. Closed-loop ARX System with Reference Signal

In this experiment, an ARX system generated the obser-
vations using a linear controller with a reference, that is

yt , a∗yt−1 + b∗ut−1 + nt, (7a)
ut , rt − c∗yt, (7b)

where {nt} was and i.i.d. sequence of standard normal
variables (i.e., zero mean Gaussian variables with unit vari-
ance), a∗ = 0.44 and b∗ = 0.33 were the unknown system
parameters we estimated, c∗ = 0.5 was the parameter of the
controller (assumed to be known in the indirect case) and
{rt} was an observed reference signal which was generated
by an autoregressive system defined as

rt , d∗rt−1 + wt,

where {wt} were i.i.d. noise variables distributed uniformly
on (0, 1), and d∗ = 0.9 was an unknown constant.

In case of direct PEM, we simply neglect the presence of
feedback and try to estimate (7a), while in the corresponding
direct SPS method we assume that we can simulate the
controller and use it when we generate alternative samples.

On the other hand, the indirect PEM approach builds on
the knowledge of the controller, e.g., parameter c∗ is known,
and that the system (7a)-(7b) can be rewritten as

yt = (a∗ − b∗c∗)yt−1 + b∗rt−1 + nt, (8a)
ut = rt − a∗rt−1 + (a∗ − b∗c∗)ut−1 − c∗nt, (8b)

where (8a) is an open-loop system, i.e., it can be written as

yt = ā yt−1 + b̄ rt−1 + nt,

where ā , (a∗ − b∗c∗), b̄ = b∗ and {rt} is independent of
the outputs {yt}. As it was highlighted, it is the preferred
parametrization for indirect SPS. This, of course, means a
parameter transformation from the viewpoint of the original
problem, thus it should be inverted to get a confidence region
for the original parameter. Since the controller is known, e.g.
c∗ is available, this can be done by solving a system of linear
equations. For this particular example, it meas that an exact
confidence region for (a∗, b∗)T can be built using the samples
of the reference signal, {rt}, and the outputs, {yt}, by

Θ̂ id
n =

{
(a, b)T ∈ R2 : R((a− bc∗, b)T) ≤ m− q

}
,

for some user-chosen integers m > q > 0. In our experi-
ments m = 100, q = 5 was used leading to 95 % confidence.

The results of building direct and indirect 95 % SPS
confidence regions for the parameters (a∗, b∗) of system

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2
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0.4

a

b

true parameter
dir. PEM est.
indir. PEM est.
dir. PEM conf.
indir. PEM conf.
dir. SPS conf.
indir. SPS conf.

Fig. 2. 95% confidence regions (n = 100) with the “true” parameter “?”
and the (direct, indirect) PEM estimate(s) “+”. The dashed lines correspond
to direct regions, while the solid lines show indirect confidence sets. In both
cases, the ellipsoids show the approximate regions of the PEM estimate(s),
while the curvy (light and dark blue) lines show the corresponding SPS sets.

(7a) based on n = 100 observations are illustrated in
Figure 2. The figure also presents the direct and indirect
PEM estimates, which in this case coincide and are simply
the least-squares estimate, with their asymptotic confidence
ellipsoids. It can be observed that the shape and size of
both SPS confidence regions are similar to their asymptotic
counterparts. For this experiment the direct and indirect SPS
provided confidence regions having similar size and shape.

B. Closed-loop ARMAX System without External Signal

In our second experiment an ARMAX system was used
which was controlled without an external reference signal,

yt , a∗yt−1 + b∗ut−1 + c∗nt−1 + nt, (9a)
ut , d∗yt + e∗yt−1, (9b)

where {nt} was an i.i.d. sequence of standard normal random
variables, a∗ = 0.33, b∗ = 0.22, and c∗ = 0.15 were
the unknown system parameters we wanted to estimate, and
d∗ = 0.31, e∗ = 0.23 were the parameters of the controller,
which were assumed to be known for the current experiment.

The direct PEM approach is again to simply use the
samples {ut} and {yt} without taking feedback into account
and estimate directly the ARMAX parameters (a∗, b∗, c∗)T.

In order to build the direct SPS confidence region around
the direct PEM estimate, first, we need to invert the noise.
In this case, the polynomials of the system are

A(z−1, θ∗) , 1− a∗z−1,

B(z−1, θ∗) , b∗z−1,

C(z−1, θ∗) , 1 + c∗z−1,

where θ∗ = (a∗, b∗, c∗)T. Then, the reconstructed noise is

n̂t(θ) = C−1(z−1, θ)
(
A(z−1, θ)yt −B(z−1, θ)ut

)
,
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Fig. 3. Part of a 95% confidence region (n = 1000) for an ARMAX
system with the “true” parameter “?” and the direct PEM estimate “+”.
The solid blue line shows the boundary of the direct SPS confidence region.
The figure is drawn with parameter c fixed at its direct PEM estimate.

where θ = (a, b, c)T is a generic parameter. This formula can
be expressed for the current example as follows

n̂t(θ) =

t−2∑
k=0

(−1)kck(yt−k − a yt−k−1 − b ut−k−1),

where we also used the assumption on the initialization (A4).
The alternative output and input trajectories are

ỹt(θ, αi) , a ỹt−1(θ, αi) + b ūt−1(θ, αi)

+ c αi,t−1n̂t−1(θ) + αi,tn̂t(θ),

ūt(θ, αi) , d∗ỹt(θ, αi) + e∗ỹt−1(θ, αi),

where {αi,t} are i.i.d. random signs, see Section III, and
i ∈ {1, . . . ,m − 1}, hence m − 1 alternative samples are
generated. The filters W and Q representing the gradient of
the noise as a function of θ can be expressed using the well-
known formulas (see Section 10.3 of [9]), which we omit
due to lack of space. Then, we have all we need to define
functions {Si(θ)} and build the SPS confidence region.

Note that this SPS approach constructs the confidence
region directly, and therefore there is no need for parameter
transformations like in the previous indirect example.

Figure 3 presents a simulation using n = 1000 observa-
tions and m = 100 trajectories (the original one and 99 al-
ternative, perturbed versions). We set q = 5 ensuring exactly
95 % confidence probability. Since we had three parameters
to estimate, the figure only shows a projection of the set,
namely we kept c fixed at its direct PEM estimate.The result
illustrates that the obtained non-conservative SPS confidence
region is well-shaped and concentrates around the direct
PEM estimate, denoted by “+” in the figure.

VI. SUMMARY AND CONCLUSION

Extending system identification methods to closed-loop
setups has high practical importance, as there are several

systems which can only be observed under feedback control,
especially in industry, economics and biology. Here we have
investigated the closed-loop applicability of the recently
developed Sign-Perturbed Sums (SPS) method [1], [2], [3],
which was originally developed for open-loop systems.

We have focused on prediction error methods (PEMs) and
studied how SPS can be applied to build confidence regions
around the main closed-loop PEM estimates, namely, the
direct-, the indirect- and the joint input-output estimate.

For open-loop systems it is known that SPS can build
non-asymptotic confidence regions around the PEM estimate
under very mild assumptions. The confidence regions built
by SPS have exact confidence probabilities independently of
the particular distribution of the noise terms, assuming they
are independent and distributed symmetrically about zero.

We have argued that this favorable non-conservative prop-
erty of SPS carries over to the closed-loop case. We have
discussed that one can build an exact confidence region
around the direct PEM estimate, in case the controller can be
simulated, which is needed to generate alternative trajectories
fundamental to SPS. We have explained that the exact con-
fidence probability of indirect SPS simply follows from the
previously mentioned result on open-loop systems assuming,
e.g., that the indirect system uses the same parameters as the
original one. The joint input-output case have been discussed,
too, however as it requires a MIMO extension of SPS, it was
left for further research. Finally, two simulation experiments
have been presented illustrating the closed-loop applicability
of SPS on simple ARX and ARMAX systems.
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