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Closed-Loop General Linear System

L (z -1) +

H (z -1)

G (z -1) +

–F (z -1)

UtRt Yt

Nt

t : (discrete) time, Yt : output, Ut : input, Nt : noise, Rt : reference,

F ,G ,H, L (causal) rational transfer functions, z−1 : backward shift.

Csáji & Weyer Closed-Loop SPS | 3



Closed-Loop General Linear System

Dynamical System: General Linear

Yt , G (z−1; θ∗)Ut + H(z−1; θ∗)Nt

t : (discrete) time, Yt : output, Ut : input, Nt : noise, Rt : reference,
G ,H : transfer functions, z−1 : backward shift, θ∗ : true parameter.

Controller: Closed-Loop with Reference Signal

Ut , L(z−1; η∗)Rt − F (z−1; η∗)Yt

L,F : transfer functions parametrized independently of G ,H.
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Main Assumptions

(A1) The “true” systems generating {Yt} and {Ut} are in the
model classes; G and H have known orders.

(A2) Transfer function H(z−1; θ) has a stable inverse, and
G (0; θ) = 0 and H(0; θ) = 1, for all θ ∈ Θ.

(A3) The noise sequence {Nt} is independent, and
each Nt has a symmetric probability distribution about zero.

(A4) The initialization is known, Yt = Nt = Rt = 0, t ≤ 0.

(A5) The subsystems from {Nt} and {Rt} to {Yt} are
asymptotically stable and have no unstable hidden modes.

(A6) Reference signal {Rt} is independent of the noise {Nt}.
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Review: SPS for Open-Loop Systems

General Linear Systems

Yt , G (z−1; θ∗)Ut + H(z−1; θ∗)Nt

– Sign-Perturbed Sums (SPS) is a finite sample system identifi-
cation method which can build confidence regions.

– SPS is distribution-free, it can work for any symmetric noise.

– The confidence set has exact confidence probability (user-chosen).

– The SPS sets are build around the prediction error estimate.

– SPS is strongly consistent (for lin. reg.).

– The sets of SPS are star convex (for lin. reg.).

– Efficient ellipsoidal outer approximations exists (for lin. reg.).
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Open-Loop Prediction Error Estimate

Prediction Error or Residual (for parameter θ)

ε̂t(θ) , H−1(z−1; θ)
(
Yt − G (z−1; θ)Ut

)
Note that ε̂t(θ

∗) = Nt , hence, it is accurate for θ = θ∗.

Prediction Error Estimate (for model class Θ)

θ̂PEM , arg min
θ∈Θ

V(θ | Z) = arg min
θ∈Θ

n∑
t=1

ε̂ 2
t (θ)

where Z is the available data: finite realizations of {Yt} and {Ut}.

In general, there is no closed-form solution for PEM.
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Open-Loop Prediction Error Equation

The PEM estimate can be found, e.g., by using the equation

PEM Equation

∇θV(θ̂PEM | Z) =
n∑

t=1

ψt(θ̂PEM) ε̂t(θ̂PEM) = 0

where ψt(θ) is the negative gradient of the prediction error,

ψt(θ) , −∇θ ε̂t(θ).

These gradients can be directly calculated in terms of the defining
polynomials of the rational transfer functions G and H.
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Perturbed Samples: Open-Loop Case

Perturbed Output Trajectories

Ȳt(θ, αi ) , G (z−1; θ)Ut + H(z−1; θ) (αi ,t ε̂t(θ))

where {αi ,t} are random signs: αi ,t = ±1 with probability 1
2 each.

Recall that ψt(θ) is a linear filtered version of {Yt} and {Ut},

ψt(θ) = W0(z−1; θ)Yt + W1(z−1; θ)Ut ,

where W0 and W1 are vector-valued, and ψt(θ) ∈ Rd .

Perturbed (Negative) Gradients

ψ̄t(θ, αi ) , W0(z−1; θ) Ȳt(θ, αi ) + W1(z−1; θ)Ut
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Sign-Perturbed Sums: Open-Loop Case

Reference and m − 1 Sign-Perturbed Sums

S0(θ) , Ψ
− 1

2
n (θ)

∑n

t=1
ψt(θ) ε̂t(θ)

Si (θ) , Ψ̄
− 1

2
n (θ, αi )

∑n

t=1
ψ̄t(θ, αi )αi ,t ε̂t(θ)

where Ψn and Ψ̄n are (sign-perturbed) covariances estimates

Ψn(θ) ,
1

n

∑n

t=1
ψt(θ)ψT

t (θ)

Ψ̄n(θ, αi ) ,
1

n

∑n

t=1
ψ̄t(θ, αi )ψ̄

T
t (θ, αi )
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Non-Asymptotic Confidence Regions: Open-Loop Case

R(θ) is the rank of ‖S0(θ)‖2 among {‖Si (θ)‖2} (with tie-breaking).

SPS Confidence Regions for General Linear Systems

Θ̂n ,
{
θ ∈ Rd : R( θ ) ≤ m − q

}
where m > q > 0 are user-chosen (integer) parameters.

We have S0(θ̂PEM) = 0, thus, θ̂PEM ∈ Θ̂n, if it is non-empty.

Exact Confidence of SPS for General Linear Systems

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
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Closed-Loop Prediction Error Methods (PEMs)

– Direct Identification
(Simply neglect the controller, treat the system as the inputs
were independent, i.e., if the system operated in open-loop).

– Indirect Identification
(If the controller is known, treat the reference signal as the
input, leading to a reformulated open-loop system).

– Joint Input-Output Identification
(Identify both the system and the controller as if the observa-
tions would come from a system with vector-valued outputs).
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Direct Identification

Direct Identification (PEM)

– Goal: to estimate θ∗, i.e., to identify H and G .

– Assumption: controller is informative.

– Idea: feedback is neglected.

– Method: SISO Open-Loop PEM (original system).

Simply neglecting the feedback does not work for SPS, as

{Yt} and {Ȳt(θ
∗, α1)}, . . . , {Ȳt(θ

∗, αm−1)}

does not have the same distribution (essential for exact confidence).

The alternative outputs should be built using alternative inputs.
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Closed-Loop SPS for Direct PEM

Assume that the controller can be simulated (black box).

Then, the alternative output trajectories can be redefined as

Direct SPS: Perturbed Output Trajectories

Ỹt(θ, αi ) , G (z−1; θ) Ūt(θ, αi ) + H(z−1; θ) (αi ,t ε̂t(θ))

using alternative feedbacks given the alternative outputs

Direct SPS: Alternative Feedbacks

Ūt(θ, αi ) , L(z−1; η∗)Rt − F (z−1; η∗) Ỹt(θ, αi )

The exact confidence probability of Direct SPS is then guaranteed.
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Indirect Identification

Indirect Identification (PEM)

– Goal: to estimate θ∗, i.e., to identify H and G .

– Assumptions: controller is known, {Rt} is measurable.

– Idea: restate as an open-loop system, treat {Rt} as inputs.

– Method: SISO Open-Loop PEM (reformulated system).

An alternative open-loop system can be formulated as

Yt = G0(z−1;κ∗)Rt + H0(z−1;κ∗)Nt

where the parametrization, κ, can be different and

G0(z−1;κ∗) , (1 + GF )−1GL

H0(z−1;κ∗) , (1 + GF )−1H
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Closed-Loop SPS for Indirect PEM

Then, open-loop SPS can applied by treating {Rt} as the input.

In order to test θ, the alternative κ should be first computed from

(1 + G (θ)F )−1G (θ)L = G0(κ)

(1 + G (θ)F )−1H(θ) = H0(κ)

If an (exact or approximate) solution is given by κ = g(θ), then

Indirect SPS Confidence Regions

Θ̂ id
n , { θ ∈ Θ : R(g(θ)) ≤ m − q }

which results in exact confidence under the additional assumption

(A7) Parameter transformation g satisfies g(θ∗) = κ∗.
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Joint Input-Output Identification

Joint Input-Output Identification (PEM)

– Goal: to estimate (θ∗, η∗), the controller is also identified.

– Assumption: no reference signal (for simplicity).

– Idea: reformulate as an autonomous vector-valued system.

– Method: MIMO Open-Loop PEM (vector-valued system).

[Yt ,Ut ]
T is treated as output of a vector-valued autonomous system

Zt ,

[
Yt

Ut

]
=

[
(I + GF )−1H
−F (I + GF )−1H

]
Nt = H̃(z−1, κ∗)Nt ,

driven by symmetric and independent noise terms {Nt}.
Thus, a vector-valued variant of SPS is needed (future research).
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Experimental Results

Closed-Loop ARX with Reference Signal:

yt , a∗yt−1 + b∗ut−1 + nt

ut , rt − c∗yt

with reference rt , d∗rt−1 + wt , where {wt} are i.i.d., U(0, 1).

For indirect identification the system can be rewritten as

yt = (a∗ − b∗c∗)yt−1 + b∗rt−1 + nt

based on which the indirect SPS confidence set is

Θ̂ id
n =

{
(a, b)T ∈ R2 : R((a− bc∗, b)T) ≤ m − q

}
assuming a known controller, i.e., constant c∗ is available.
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Experimental Results: Closed-Loop ARX with Reference
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Summary and Conclusion

– Sign-Perturbed Sums (SPS) is a non-asymptotic system iden-
tification method which can build exact confidence regions for
general linear systems under mild statistical assumptions.

– Originally, SPS was introduced for open-loop systems, where
the confidence set is built around the prediction error estimate.

– Here, we showed that the favorable properties of SPS men-
tioned above can be carried over to closed-loop systems.

– The direct-, the indirect-, and the joint input-output closed-
loop approaches of the prediction error method were addressed.

– Closed-loop variants of SPS were discussed for the direct and
the indirect cases, both leading to exact confidence regions.

– The joint input-output approach was also mentioned, but left
for future research: it requires a vector-valued extension of SPS.
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Thank you for your attention!
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